首页> 外文学位 >Microfabrication of electrode surfaces for biosensors.
【24h】

Microfabrication of electrode surfaces for biosensors.

机译:用于生物传感器的电极表面的微细加工。

获取原文
获取原文并翻译 | 示例

摘要

This work describes the strategies used to develop an amperometric biosensor for the detection of glutamate in vivo on a physiologically relevant time scale. Glutamate is not electrochemically active at conditions amenable to normal brain chemistry, but amperometric detection is made possible by immobilization of an enzyme that has the appropriate characteristics needed for chemical selectivity (i.e. substrate consumption and product formation) on a carbon fiber microelectrode surface. Unfortunately, effective modification of electrode surfaces leads to slow electrode response times due to inhibition of diffusion to the electrocatalytic surface and/or inhibition of electron transfer by the immobilized enzyme. A Nd:YAG laser-generated interference pattern, used following derivatization of the entire microelectrode surface, removes 2-micron wide stripes of enzyme, restores facile electron transfer in a spatially segregated manner, and allows sub-second response time for the modified electrode.; Two methods were then developed to enhance enzyme coverage of the electrode surface prior to Nd:YAG laser pattern ablation. Electrochemical deposition of an active form of biotin was characterized and verified by attachment of fluorescently labeled avidin. This electrodeposition is faster and avidin coverage is more extensive than an previous strategies. Biotinylated Jeffamines were synthesized and used to enhance stability and further increase enzyme loading by allowing formation of dendrimeric enzyme structures on the electrode surface. This enzyme attachment scheme resulted in stable active glucose oxidase or glutamate oxidase bound to the electrode surface. Time resolution for flow injection fast scan cyclic voltammetry of glutamate at these electrodes, following treatment with the Nd:YAG laser-generated interference pattern, is on the order of 200 milliseconds. Sinusoidal voltammetry and subsequent signal processing is demonstrated to further enhance sensitivity to low micromolar levels while simultaneously allowing electrochemical signal discrimination.
机译:这项工作描述了用于开发电流型生物传感器以在生理相关的时间尺度上在体内检测谷氨酸的策略。谷氨酸在适合正常脑化学的条件下不具有电化学活性,但是通过将具有化学选择性(即底物消耗和产物形成)所需的适当特性的酶固定在碳纤维微电极表面上,可以进行安培检测。不幸的是,由于抑制了向电催化表面的扩散和/或抑制了固定化酶的电子转移,电极表面的有效修饰导致电极响应时间变慢。在整个微电极表面衍生化之后使用的Nd:YAG激光产生的干涉图样,去除了2微米宽的酶条纹,以空间隔离的方式恢复了便捷的电子转移,并为修饰电极提供了亚秒级的响应时间。 ;然后开发了两种方法来增强Nd:YAG激光图案烧蚀之前电极表面的酶覆盖率。活性形式的生物素的电化学沉积通过荧光标记的抗生物素蛋白的附着进行表征和验证。与以前的策略相比,这种电沉积更快,抗生物素蛋白的覆盖范围更广。合成了生物素化的Jeffamines,并通过允许在电极表面形成树枝状酶结构来增强稳定性并进一步增加了酶的负载。该酶附着方案导致结合到电极表面的稳定的活性葡萄糖氧化酶或谷氨酸氧化酶。在使用Nd:YAG激光产生的干涉图样进行处理后,在这些电极上进行谷氨酸的流动注射快速扫描循环伏安法的时间分辨率约为200毫秒。正弦伏安法和随后的信号处理被证明可以进一步增强对低微摩尔水平的灵敏度,同时又可以区分电化学信号。

著录项

  • 作者

    Rosenwald, Steven Eric.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 210 p.
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号