首页> 外文学位 >Solvent engineering of compressed and supercritical fluid solvents for bioprocessing applications.
【24h】

Solvent engineering of compressed and supercritical fluid solvents for bioprocessing applications.

机译:用于生物处理应用的压缩和超临界流体溶剂的溶剂工程。

获取原文
获取原文并翻译 | 示例

摘要

Supercritical fluids (SCFs) make good bioprocessing solvents because of their excellent mass transfer characteristics, 'tunable' solvent power, near-ambient processing temperatures, and easy and complete removal from the final product. The use of near and supercritical fluid technology for the processing of model proteins, pharmaceuticals, and biodegradable polymers is investigated to develop novel products and improve fundamental understanding of existing processes.; The enzymatic catalysis of a model reaction, the esterification of cholesterol using vinyl acetate (VA), in pressurized hexane and SCF ethane was studied. The initial reaction rate in pressurized hexane varied linearly with the cholesterol concentration. Thus, the increase in solubility of cholesterol in SCF ethane because of the cosolvent effect of VA also increased the rate in ethane. The reaction rate was also a function of pressure---the effect being significantly more pronounced in ethane than in hexane. The reactions were carried out at constant water activity, making this the first valid comparison of enzymatic catalysis in pressurized organic and supercritical media. The results suggested that the reaction is faster in SCF ethane than in hexane.; Precipitation using a compressed antisolvent (PCA) is a demonstrated technology for microparticle formation. The extension of PCA to the recovery of dry protein powders from aqueous-organic solutions was investigated. Lysozyme, chymotrypsin, and trypsin were precipitated from DMSO solutions containing up to 10 vol% water. The protein morphology was a function of water content. The precipitation pressure increased with water content and varied with protein type, suggesting the use of PCA as a separation technique.; Microparticle precipitation using CO2-philic antisolvents was studied to improve fundamental understanding of PCA. The ability of fluorinated CO2-philic liquid antisolvents to micronize small solutes (griseofulvin) and polymeric systems (poly(lactic acid), PLA) was compared to precipitation with CO2 and traditional antisolvents. Analogies are made between PCA and CO2-philic antisolvent precipitation based on thermodynamic driving forces and the dynamics of the spray process.; A mathematical model was developed to describe the dissolution of a solvent droplet suspended in a miscible antisolvent continuum. The governing differential equations were based on two-way mass transfer and unsteady state mass balances. The model correctly predicts that saturation and, hence, precipitation occurs earlier in liquid CO2 compared to other liquid antisolvents.
机译:超临界流体(SCF)具有出色的传质特性,“可调节的”溶剂能力,接近室温的加工温度以及易于从最终产品中完全去除的特性,因此成为了良好的生物加工溶剂。研究了使用近临界流体技术处理模型蛋白质,药物和可生物降解的聚合物,以开发新颖的产品并增进对现有工艺的基本了解。研究了模型反应的酶催化,即在加压的己烷和SCF乙烷中使用乙酸乙烯酯(VA)进行的胆固醇酯化反应。加压己烷中的初始反应速率随胆固醇浓度线性变化。因此,由于VA的助溶剂作用,胆固醇在SCF乙烷中的溶解度增加也增加了在乙烷中的比率。反应速率也是压力的函数-乙烷比己烷中的影响明显得多。反应在恒定的水活度下进行,这使其成为加压有机和超临界介质中酶催化的第一个有效比较。结果表明,SCF乙烷中的反应比己烷中的反应快。使用压缩抗溶剂(PCA)进行沉淀是一种已证明的微粒形成技术。研究了PCA扩展到从有机水溶液中回收干蛋白粉的过程。从含有至多10 vol%水的DMSO溶液中沉淀出溶菌酶,胰凝乳蛋白酶和胰蛋白酶。蛋白质形态是水分含量的函数。沉淀压力随含水量的增加而增加,并随蛋白质类型的变化而变化,这表明使用PCA作为分离技术。研究了使用亲CO2型抗溶剂进行的微粒沉淀,以提高对PCA的基本了解。将氟化的亲CO2液体抗溶剂将微小溶质(griseofulvin)和聚合物体系(聚乳酸,PLA)微粉化的能力与采用CO2和传统抗溶剂的沉淀进行了比较。基于热力学驱动力和喷涂过程的动力学,对PCA和亲二氧化碳的反溶剂沉淀进行了类比。建立了数学模型来描述悬浮在可混溶的反溶剂连续体中的溶剂滴的溶解。控制微分方程基于双向传质和非稳态质量平衡。该模型正确地预测,与其他液体抗溶剂相比,液体CO2中的饱和度以及因此产生的沉淀更早。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号