首页> 外文学位 >Void -free flame retardant phenolic networks: Properties and processability.
【24h】

Void -free flame retardant phenolic networks: Properties and processability.

机译:无孔阻燃酚醛网络:性能和可加工性。

获取原文
获取原文并翻译 | 示例

摘要

Phenolic resins are important components of the composite industry because of their excellent flame retardance and cost effectiveness. However, the common procedure for curing phenolic novolac resins uses hexamethylenetetramine (HMTA) and releases volatiles during the cure, which produce networks with numerous voids. This results in materials that lack the toughness necessary for structural applications. An alternative to curing with HMTA is to crosslink the pendant phenolic groups in the novolac resin with epoxy reagents. This reaction proceeds by nucleophilic addition without the release of any volatiles, thereby creating a void-free network. Flame retardance can be achieved by using an excess of the phenolic component. Network densities can also be controlled to maximize both toughness and stiffness by tailoring the stoichiometry of the reagents.;Structure-property relationships of phenolic/epoxy networks have been investigated. Glass transitions decreased, and toughness increased, as the phenolic content in the network was increased. Both results could be correlated to the decrease in network densities along this series, which was investigated by measuring the rubbery moduli well above Tg. Fracture toughness of phenolic/epoxy networks measured by K1c reached 1.03 MPa-m 1/2, compared with an epoxy control with K1c = 0.62 MPa-m 1/2 and phenolic control with K1c = 0.16 MPa-m1/2 . In addition, an increase in novolac content improves flame retardance rather dramatically. The peak heat release rate (PHRR) dropped from 1230 kW/m 2 for the epoxy control to 260 kW/m2 for the phenolic/epoxy networks, which approached that of a phenolic resol (PHRR = 116 kW/m 2). Phenolic/epoxy composite flame retardance also showed significant improvement when compared to epoxy composites.;Melt processability of phenolic/epoxy composites has been achieved through the use of latent nucleophilic initiators. Kinetics of the phenolic/epoxy cure reactions with latent initiators demonstrated that monomeric phosphine initiators yielded faster cure reactions as compared to polymeric initiators. These latent initiators allow composite melt processing, such as prepregging or pultrusion, without premature curing. In addition, cure cycles can be reduced from 4 hours to less than 34 minutes. Composites prepared using these latent initiators had toughness exceeding that of epoxy composites and fatigue limits significantly higher than those of vinyl ester composites.
机译:酚醛树脂由于其出色的阻燃性和成本效益而成为复合材料工业的重要组成部分。但是,固化酚醛线型酚醛树脂的常用步骤是使用六亚甲基四胺(HMTA),并在固化过程中释放出挥发物,从而产生带有大量空隙的网络。这导致材料缺乏结构应用所需的韧性。用HMTA固化的另一种方法是使酚醛清漆树脂中的酚侧基与环氧试剂交联。该反应通过亲核加成进行而没有释放任何挥发物,从而形成无空隙的网络。通过使用过量的酚类组分可以实现阻燃性。也可以通过调整试剂的化学计量来控制网络密度,以最大程度地提高韧性和刚度。;已研究了酚醛/环氧网络的结构-性质关系。随着网络中酚含量的增加,玻璃化转变减少,韧性增加。这两个结果都可能与该系列中网络密度的降低有关,这是通过测量远高于Tg的橡胶模量进行研究的。与K1c = 0.62 MPa-m 1/2的环氧控制和K1c = 0.16 MPa-m1 / 2的酚醛控制相比,用K1c测量的酚醛/环氧网络的断裂韧性达到1.03 MPa-m 1/2。另外,酚醛清漆含量的增加极大地改善了阻燃性。峰值热释放速率(PHRR)从环氧控制的1230 kW / m 2下降到酚醛/环氧网络的260 kW / m2,接近酚醛酚醛树脂(PHRR = 116 kW / m 2)。与环氧复合材料相比,苯酚/环氧复合材料的阻燃性也显示出显着的改善。;酚/环氧复合材料的熔融加工性已通过使用潜在的亲核引发剂实现。与潜在引发剂的酚/环氧固化反应的动力学表明,与聚合引发剂相比,单体膦引发剂的固化反应更快。这些潜在的引发剂可进行复合熔体加工,例如预浸或拉挤成型,而无需过早固化。另外,固化周期可以从4小时减少到少于34分钟。使用这些潜在引发剂制备的复合材料的韧性超过了环氧复合材料,并且疲劳极限明显高于乙烯基酯复合材料。

著录项

  • 作者

    Tyberg, Christy Sensenich.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号