首页> 外文学位 >Particle synthesis in jet flames generating multi-component aerosols
【24h】

Particle synthesis in jet flames generating multi-component aerosols

机译:喷射火焰中的颗粒合成产生多组分气溶胶

获取原文
获取原文并翻译 | 示例

摘要

Of the many different methods used to produce nanophase powders, few are able to achieve high production rates while minimizing the agglomeration of particles. Furthermore, the powders produced, if non-oxide, must be handled using costly techniques due to their highly reactive nature. Recently, a flame synthesis process conceptually similar to commercial flame processes used to produce millions of tons of ceramic and carbon black powder annually, was extended to allow the production of unagglomerated, non-oxide nanophase powders. This technique employs an encapsulation step during the aerosol growth stage to control particle size, prevent agglomeration and protect the powders from oxidation/hydrolysis during post-synthesis handling. The encapsulation material (typically a salt) can be removed during post-flame processing. A Monte Carlo numerical simulation suggests that the encapsulation process occurs in two steps. Initially the flame-synthesized particles grow normally, but upon condensation of the encapsulate material (salt) the size distribution transitions into a bimodal size distribution, with the coarse mode consisting primarily of salt. The coarse mode then acts to scavenge the fine mode. To fully exploit the benefits of encapsulating the nanoparticles high encapsulation efficiencies must be attained. Experimental results will be presented in which the encapsulation efficiency is analyzed and found to asymptotically approach 100%. The final morphology of the core particles will depend on the scavenging process and the behavior of the core particles within the scavenging particles. Experimental results will be presented for three materials, each with different physical properties. Differences in morphology can be explained by considering differences in the coalescence mechanisms and solid-state diffusion coefficients. To demonstrate the scalability of the process the existing laminar jet flame facility has been converted to a turbulent jet facility. Experimental results will be presented for the synthesis of metal and ceramic powders in the turbulent jet facility showing the influence of various process parameters on encapsulation efficiency as well as particle morphology.
机译:在用于生产纳米相粉末的许多不同方法中,很少有能够在将颗粒的团聚最小化的同时实现高生产率的方法。此外,由于其高反应性,所产生的粉末(如果是非氧化物的话)必须使用昂贵的技术进行处理。最近,从概念上类似于用于每年生产数百万吨的陶瓷和炭黑粉末的商业火焰工艺的火焰合成工艺得到了扩展,以允许生产未团聚的非氧化物纳米相粉末。该技术在气溶胶生长阶段采用封装步骤,以控制粒径,防止结块并在合成后处理过程中保护粉末免受氧化/水解。可以在火焰后处理过程中去除封装材料(通常为盐)。蒙特卡洛数值模拟表明,封装过程分两个步骤进行。最初,火焰合成的粒子正常生长,但在包封材料(盐)凝结后,尺寸分布转变为双峰尺寸分布,其中粗模式主要由盐组成。然后,粗略模式用于清除精细模式。为了充分利用封装纳米颗粒的好处,必须实现高封装效率。将给出实验结果,其中分析封装效率并发现其渐近接近100%。核心粒子的最终形态将取决于清除过程和清除粒子内核心粒子的行为。将给出三种材料的实验结果,每种材料具有不同的物理特性。可以通过考虑聚结机理和固态扩散系数的差异来解释形态上的差异。为了证明该过程的可扩展性,现有的层流喷射火焰设备已转换为湍流喷射设备。将给出在湍流射流设备中合成金属和陶瓷粉末的实验结果,显示各种工艺参数对包封效率以及颗粒形态的影响。

著录项

  • 作者

    Rosen, Lee Jonathan.;

  • 作者单位

    Washington University in St. Louis.;

  • 授予单位 Washington University in St. Louis.;
  • 学科 Mechanical engineering.;Chemical engineering.
  • 学位 D.Sc.
  • 年度 2000
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号