首页> 外文学位 >Thermal adaptive implicit reservoir simulation.
【24h】

Thermal adaptive implicit reservoir simulation.

机译:热适应性隐式油藏模拟。

获取原文
获取原文并翻译 | 示例

摘要

The Fully Implicit Method (FIM) is widely used in numerical reservoir simulation due to its unconditional stability, which allows for arbitrarily large time steps. However, FIM is computationally expensive per time step, especially for large numbers of components and highly detailed reservoir models. IMPEST (Implicit Pressure, Explicit Saturations, Temperature and mole fractions), on the other hand, is computationally inexpensive, but only conditionally stable. For large-scale heterogeneous models, the allowable stable time step of IMPEST may be extremely small. In the Adaptive Implicit Method (AIM), only a subset of the primary variables is treated implicitly. AIM offers a balance between FIM and IMPEST by employing implicit treatment only when and where necessary. The challenge with AIM is to: (1) find robust and sharp stability criteria that can be used to choose an optimal time step size, and (2) devise an efficient switching algorithm to dynamically label variables in gridblocks implicit or explicit.;The objective of this thesis is to formulate, implement, and validate an efficient Thermal Adaptive Implicit Method (TAIM) that is capable of solving the nonlinear system of algebraic equations efficiently using the minimum number of implicit variables for a given time step. TAIM includes the stability criteria for the selection of the time step size and a switching algorithm to label the variables as either implicit or explicit.;The TAIM stability criteria are obtained using the von Neumann approach. The derivation of the criteria is obtained using a comprehensive linear stability analysis that takes into account the complex physics being modeled, including mass and heat convection, thermal conduction, phase change, and gravity. The criteria were implemented and evaluated using Stanford's General Purpose Research Simulator (GPRS). The stability criteria serve as an input to a switching algorithm that calculates the maximum possible time step size for which a stable solution for explicit saturation, temperature, and compositions in a gridblock is guaranteed. We implemented two switching algorithms in GPRS, namely, percentage-based and variable-based. In the percentage-based approach, the user specifies the percentage break-up between various implicit schemes. Since an arbitrary percentage break-up in difficult problems can lead to extremely small time steps, thereby rendering the TAIM method infeasible, a more optimal solution is for the user to specify a desired time step size, and let the TAIM switching algorithm decide on the implicit/explicit labeling of variables in the gridblocks. We formulated this algorithm and refer to this approach as the variable-based TAIM.;We demonstrate that a TAIM-based approach is a promising technique for the simulation of thermal-compositional displacement processes of practical interest. TAIM simulations are not only more accurate than their FIM counterparts due to reduced numerical diffusion, but TAIM also offers an efficient numerical simulation method that uses time steps comparable to those used in FIM, while treating a large subset of the variables explicitly. In this thesis, we derive the thermal-compositional stability criteria that provide the CFL (Courant-Friedrichs-Lewy) numbers to obtain the maximum allowable time steps. The criteria are used in conjunction with a variable-based switching algorithm that labels the variables as implicit/explicit, which can vary both in space and time. We found the stability criteria to be sharp, i.e., when convection is the dominant mechanism, mild violations of the stability limits lead to unstable solutions both in the saturation and temperature profiles. In our numerical experiments, small violations of the CFL numbers lead to significant deviations from the reference solutions; for larger CFL violations, severe oscillations were observed in the explicit variables. When thermal conduction is dominant over convection, the stability criteria restrict the allowable time steps to impractically small values, when temperature is treated explicitly. The variable-based TAIM method accurately captures the countercurrent shocks and their reflection in the gravity segregation problems by treating the saturation around sharp gradients implicitly. TAIM is effective in reducing the number of implicit variables considerably from the fully implicit set, and it allows the use of time steps that are comparable to FIM for large problems.
机译:完全隐式方法(FIM)由于其无条件的稳定性而被广泛地用于数值油藏模拟中,这允许任意大的时间步长。但是,FIM每时步的计算量很大,尤其是对于大量的零件和高度详细的油藏模型而言。另一方面,IMPEST(隐式压力,显式饱和度,温度和摩尔分数)在计算上不昂贵,但仅在条件上稳定。对于大型异构模型,IMPEST的允许稳定时间步长可能会非常小。在自适应隐式方法(AIM)中,仅隐式处理主变量的一个子集。 AIM仅在必要时和必要时采用隐式处理,从而在FIM和IMPEST之间取得平衡。 AIM面临的挑战是:(1)找到可用于选择最佳时间步长的稳健且敏锐的稳定性标准,以及(2)设计一种有效的切换算法,以动态标记隐式或显式网格块中的变量。本文的目的是制定,实施和验证一种有效的热自适应隐式方法(TAIM),该方法能够在给定的时间步长内使用最少的隐式变量来有效地求解非线性代数方程组。 TAIM包括用于选择时间步长的稳定性标准和用于将变量标记为隐式或显式的切换算法。TAIM稳定性标准是使用von Neumann方法获得的。使用全面的线性稳定性分析得出标准的推导,该分析考虑了建模的复杂物理,包括质量和热对流,导热,相变和重力。使用斯坦福大学的通用研究模拟器(GPRS)对标准进行了实施和评估。稳定性标准用作切换算法的输入,该算法计算最大可能的时间步长,可确保为网格块中的显式饱和度,温度和成分提供稳定的解决方案。我们在GPRS中实现了两种切换算法,即基于百分比和基于变量。在基于百分比的方法中,用户指定各种隐式方案之间的百分比分解。由于在难题中任意打破百分比会导致极小的时间步长,从而使TAIM方法不可行,因此,对于用户来说,一种更理想的解决方案是指定所需的时间步长,然后让TAIM切换算法决定网格块中变量的隐式/显式标记。我们制定了该算法并将这种方法称为基于变量的TAIM。我们证明了基于TAIM的方法是一种有实际意义的用于模拟热组成位移过程的有前途的技术。由于减少了数值扩散,TAIM仿真不仅比FIM同行更准确,而且TAIM还提供了一种有效的数值仿真方法,该方法使用与FIM中使用的时间步长相当的时间步长,同时显式处理变量的较大子集。在本文中,我们推导了热-组成稳定性准则,该准则提供了CFL(Courant-Friedrichs-Lewy)数以获得最大允许时间步长。该标准与基于变量的切换算法结合使用,该算法将变量标记为隐式/显式,可以在空间和时间上变化。我们发现稳定性标准非常严格,即当对流是主要机理时,轻度违反稳定性极限会导致饱和度和温度曲线中的溶液不稳定。在我们的数值实验中,对CFL数的微小违反会导致与参考溶液的显着偏差;对于较大的违反CFL的行为,在显式变量中观察到严重的振荡。当热传导高于对流时,在明确处理温度时,稳定性标准将允许的时间步长限制为不切实际的小值。基于变量的TAIM方法通过隐式处理陡坡附近的饱和度,可以准确地捕获逆流冲击及其在重力偏析问题中的反映。 TAIM可以有效地从完全隐式集中减少隐式变量的数量,并且它允许在大型问题上使用与FIM相当的时间步长。

著录项

  • 作者

    Agarwal, Anshul.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 石油、天然气工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号