首页> 外文学位 >Cohomology of monoidal categories and non-Abelian group cohomology.
【24h】

Cohomology of monoidal categories and non-Abelian group cohomology.

机译:单项类别的同调和非阿贝尔群同调。

获取原文
获取原文并翻译 | 示例

摘要

To characterize the categorical constraints—associativity, commutativity and monoidality—in the wider context of quasimonoidal categories, from a multiplicative cohomological point of view, we define the notion of a parity quasi-complex.; We introduce the standard parity complex of a group G with non abelian coefficients and define the corresponding cohomology spaces in all dimensions. In dimensions less then two it coincides with the non-abelian cohomology spaces as agreed by various authors.; The cohomology space H3 corresponds to quasi-extensions and H2, H 1, H0 corresponds as usual to group extensions, split extensions and invariants, as in the abelian case.; We introduce two new categorification procedures, which are functors from the category of groups to the category of monoidal categories. Fiber categorification associates to a group a monoidal groupoid and bundle categorification associates to a group extension a fibration of monoidal groupoids. The correspondences are functorial and compatible with discrete categorification, a procedure used in [CY2] in connection with fusion rings.; The categorification is compatible with the parity quasi-complexes of the corresponding groups and monoidal categories. It allows to interpret (1) cochains as functors, (2) cocycles—monoidal structures, (3) cocycles—associators, representing a correspondence between non-abellan group cohomology and the cohomology of a functor.; A class of commutativity constraints in monoidal categories is identified. They are equivalences of the associators of the monoidal category and its opposite. It extends the class of braidings. It is proved that the category of representations of an almost cocomutative Hopf algebra is a commutative monoidal category iff the latter is a coboundary Hopf algebra.; As a model for the categorical setup, we investigate the Hochschild cohomological construction in the non-associative case. The notion of a N-coherent algebra is introduced and their cohomology is defined using the construction from [Ka].; The non-associativity condition is naturally interpreted as a curvature. The square of the Hochschild quasi-differential is proved to have the properties related to the curvature from the context of differential geometry. A possible geometric viewpoint is mentioned: torsion algebras. The non-associative multiplication is interpreted as a formal connection and the elements of the algebra are thought of as formal vector fields. We determine conditions for the existence of an algebra of “functions” and representing the formal vector fields as derivations.
机译:为了从广义同调的角度,在拟sim类范畴的更广泛的上下文中表征分类约束(缔合性,可交换性和单性),我们定义了奇偶拟复的概念。我们引入具有非阿贝尔系数的 G 组的标准奇偶校验复数,并定义所有维度上的对应同调空间。在小于2的维数中,它与各作者所同意的非阿贝尔同调空间一致。同空间 H 3 对应于拟扩展,而 H 2 H ; 1 H 0 照常对应于组扩展,拆分扩展和不变式,如阿贝尔语。我们介绍了两个新的分类程序,它们是从组类别到单等类别的函子。 纤维分类关联一个类群的类群, bundle categorification 关联一个类群类群的类群扩展。对应关系是功能性的,并且与离散分类兼容,离散分类是在[CY2]中用于融合环的过程。该分类与相应组和齐整体类别的奇偶准复合体兼容。它允许将(1)共链解释为函子,(2)循环-单态结构,(3)循环-缔合子,代表非阿贝拉群同调性与函子的同调性之间的对应关系;确定了单曲面类别中的一类可交换性约束。它们是等分类别和其相反类别的关联者的等价物。它扩展了编织的类别。证明了一个几乎可交换的Hopf代数的表示类别是一个交换可交换的类,如果后者是一个可交界的Hopf代数。作为分类设置的模型,我们研究了非关联案例中的Hochschild同调构造。介绍了N相干代数的概念,并使用[Ka]中的结构定义了它们的同调。非结合性条件自然地解释为曲率。从微分几何的角度证明,Hochschild准微分的平方具有与曲率有关的性质。提到了一种可能的几何观点:扭转代数。非缔合乘法被解释为形式连接,代数的元素被认为是形式向量场。我们确定“函数”的代数的存在条件,并将形式向量场表示为导数。

著录项

  • 作者

    Ionescu, Lucian Miti.;

  • 作者单位

    Kansas State University.;

  • 授予单位 Kansas State University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号