首页> 外文学位 >Novel 1.3-micron high-speed directly modulated semiconductor laser device designs and the development of wafer bonding technology for compliant-substrate fabrication.
【24h】

Novel 1.3-micron high-speed directly modulated semiconductor laser device designs and the development of wafer bonding technology for compliant-substrate fabrication.

机译:新型1.3微米高速直接调制半导体激光器件设计以及用于顺应性衬底制造的晶圆键合技术的发展。

获取原文
获取原文并翻译 | 示例

摘要

High speed optical sources at 1.3 μm are required to drive the fiber optic infrastructure around the world. Of the three components that make up an optical link, these sources limit the overall data transmission capacity of these networks. The importance of operating at 1.3 μm, has led device engineers to rely on InP-based devices, though inferior in many ways to devices based on GaAs. This work seeks to develop new device designs to improve the directly modulated bandwidths of 1.3 μm lasers.; Elevated temperatures degrade the DC and high speed performance of semiconductor lasers. InP-based devices are especially susceptible to temperature variations. Lasers were flip chip bonded to diamond heat sinks to improve heat removal from these devices. Although dramatic improvements were seen in their DC performance, the lasers' high frequency response did not improve. Other factors such, as carrier heating, likely limited the performance of these devices. Device designs on GaAs emitting at 1.3 μm were sought as a replacement for the troublesome InP devices. Laser structures employing ordered quantum wells on GaAs (111) substrates have been proposed. Theoretical calculations indicate that 1.3 μm emission should be achievable, and 1.55 μm emission may be possible. Experimental evidence from devices based on GaAs (111) indicates that such lasers should outperform their InP-based counterparts.; Lasers grown on InGaAs-like substrates, either bulk ternary or compliant substrates, are promising candidates for improving 1.3 μm device performance. In anticipation of availability of such substrates, a toolkit for designing InxGa1–xAs quantum well lasers on InyGa 1–yAs substrates has been developed. The choice of well and substrate compositions, well width and desired percentage strain combinations emitting at 1.3 μm can be made using a few simple graphs. An analytical valence band model has been employed to qualitatively test competing device designs. Twist bonded compliant substrate production requires the wafer fusion of two substrates. A wafer bonding system has been designed, built and tested to improve wafer bonding techniques for this application. This machine's scalable design is capable of improved reproducibility, uniformity and yield over comparable techniques.
机译:需要1.3μm的高速光源来驱动全球的光纤基础设施。在组成光链路的三个组件中,这些源限制了这些网络的整体数据传输容量。以1.3μm进行操作的重要性已导致设备工程师依赖于基于InP的设备,尽管在许多方面均不如基于GaAs的设备。这项工作旨在开发新的设备设计,以改善1.3μm激光器的直接调制带宽。高温会降低半导体激光器的直流和高速性能。基于InP的设备尤其容易受到温度变化的影响。将激光器倒装芯片结合到金刚石散热器上,以改善这些设备的散热能力。尽管在直流性能方面看到了显着的改善,但激光器的高频响应却没有改善。其他因素,例如载热,可能会限制这些设备的性能。人们寻求在1.3μm的GaAs上进行器件设计,以替代麻烦的InP器件。已经提出了在GaAs(111)衬底上采用有序量子阱的激光结构。理论计算表明应该可以实现1.3μm的发射,而1.55μm的发射是可能的。来自基于GaAs(111)的设备的实验证据表明,此类激光器应优于其基于InP的激光器。在类似InGaAs的衬底(块状三元或顺应性衬底)上生长的激光有望改善1.3μm器件性能。考虑到此类基板的可用性,在In y Ga 上设计In x Ga 1-x As量子阱激光器的工具包已经开发出1–y As衬底。可以使用一些简单的图形来选择阱和衬底的组成,阱宽度以及在1.3μm处发射的所需应变百分比的组合。分析价带模型已用于定性测试竞争性设备设计。扭曲粘合的柔性基板生产需要两个基板的晶圆融合。已经设计,制造和测试了晶片键合系统,以改进用于该应用的晶片键合技术。与同类技术相比,该机器的可扩展设计能够提高重现性,均匀性和良率。

著录项

  • 作者

    Greenberg, Joseph.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Engineering Electronics and Electrical.; Physics Condensed Matter.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:47:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号