首页> 外文学位 >An experimental and numerical investigation of the machining of anisotropic materials including wood and a wood composite (particleboard).
【24h】

An experimental and numerical investigation of the machining of anisotropic materials including wood and a wood composite (particleboard).

机译:对包括木材和木材复合材料(刨花板)在内的各向异性材料进行机械加工的实验和数值研究。

获取原文
获取原文并翻译 | 示例

摘要

This research investigated the machining of wood and particleboard through experimental and numerical approaches to develop the fundamental understanding of the machining of anisotropic materials.; A microscope-video-cutting experimental setup was developed to examine the chip formation processes. It was found that the machining of anisotropic materials is very complex and different from the machining of isotropic materials. The material anisotropy plays a very important role in the chip formation process. Four modes of chip formation mechanisms were identified in the machining of wood and particleboard. They are Mode I crack fracture, Mode II shear failure, Mode III compression failure and uniquely for particleboard Mode IV debonding. The material orthotropy and the cutting conditions determine the principal chip formation mode.; An elastic-plastic orthotropic homogeneous material model was established. A nonlinear finite element (FE) model was developed to simulate both Mode I and Mode II chip formation processes. It simulated the chip formation process from the incipient nonsteady state cutting to the steady state cutting for Mode II and to the cyclical state cutting for Mode I. A geometric chip separation criterion was used and was proved valid.; Both experimental and numerical results revealed that for Mode II chip formation a shear zone is formed. Grain orientations determine the shear angles. All shear zones were found to lie almost parallel to the weakest shear strength directions. With grain orientation angles varying from 0° to 90°, the predicted shear mode cutting forces follow a bell curve and agree with experimental results very well.; An othotropic linear elastic fracture mechanics (LEFM) criterion was developed for wood. The mixed mode stress intensity factors were evaluated using the finite element method. The predicted results agree with experimental observations very well and show that large depth of cut favors Mode I chip formation.; The characteristics of different chip formation processes are well captured in FE simulations. The predicted cutting forces closely agree with the experimental results. These results suggest that the newly developed material model and the FE model are successful and well suitable for studying the machining of orthotropic materials.
机译:这项研究通过实验和数值方法研究了木材和刨花板的加工,以发展对各向异性材料加工的基本认识。开发了显微镜视频切割实验装置以检查切屑形成过程。发现各向异性材料的加工非常复杂并且不同于各向同性材料的加工。材料各向异性在切屑形成过程中起着非常重要的作用。在木材和刨花板的加工中确定了四种模式的切屑形成机理。它们是模式I裂纹断裂,模式II剪切破坏,模式III压缩破坏,并且专门用于刨花板模式IV脱胶。材料的正交性和切削条件决定了主要的切屑形成方式。建立了弹塑性正交各向异性均质材料模型。开发了非线性有限元(FE)模型来模拟模式I和模式II芯片形成过程。模拟了从初始非稳态切削到模式II的稳态切削,再到模式I的周期性切削的切屑形成过程。采用了几何切屑分离准则,并证明是有效的。实验和数值结果均表明,对于模式II切屑形成,形成了剪切区。晶粒取向确定剪切角。发现所有剪切区几乎平行于最弱的剪切强度方向。当晶粒取向角在0°到90°之间变化时,预测的剪切模式切削力遵循钟形曲线,与实验结果非常吻合。为木材开发了一种各向异性线性弹性断裂力学(LEFM)准则。使用有限元方法评估了混合模式应力强度因子。预测结果与实验观察非常吻合,表明较大的切削深度有助于形成I型切屑。有限元仿真可以很好地捕获不同切屑形成过程的特征。预测的切削力与实验结果非常吻合。这些结果表明,新开发的材料模型和有限元模型是成功的,非常适合研究正交异性材料的加工。

著录项

  • 作者

    Wang, Xiangfu.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Mechanical.; Agriculture Wood Technology.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;森林采运与利用;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号