首页> 外文学位 >Modeling and simulation of laser-induced ignition of RDX monopropellant and steady-state combustion of HMX/GAP pseudo-propellant.
【24h】

Modeling and simulation of laser-induced ignition of RDX monopropellant and steady-state combustion of HMX/GAP pseudo-propellant.

机译:激光诱导的RDX推进剂点火和HMX / GAP拟推进剂稳态燃烧的建模与仿真。

获取原文
获取原文并翻译 | 示例

摘要

A comprehensive analysis of laser-induced ignition of 1,3,5-trinitrohexahydro-s-triazine (RDX) monopropellant has been performed with consideration of detailed chemical kinetics. The model considers the transient development in the entire combustion zone, including the solid-phase, subsurface two-phase, and gas-phase regions. The formulation accommodates detailed chemical kinetics and transport phenomena in the gas phase, as well as thermal decomposition and subsequent reactions in the subsurface two-phase region. Thermodynamic phase transition and volumetric radiant energy absorption are also considered for completeness. The analysis is capable of treating the complete ignition process from surface pyrolysis to steady-state combustion, with the instantaneous burning rate and surface conditions treated as part of the solutions. Numerical experiments were conducted at atmospheric pressure in argon with the CO2 laser heat flux from 35 to 600 W/cm2. Excellent agreement is obtained between the calculated and measured ignition delay. The propellant gasification rate increases with increasing laser intensity which in turn gives rise to shorten the ignition delay. The entire process can be approximately divided into six stages: inert heating, thermal decomposition, occurrence of primary flame, preparation and formation of secondary flame, and finally establishment of steady-state combustion. The major process in the primary flame is identified as the consumption of CH2O, HONO, NO2, H2CN, H2CNNO 2, and HNO. In the secondary flame, the conversion of NO and HCN to N2, CO, H2O, and H2 is the key exothermic process causing ignition in the gas phase.
机译:考虑到详细的化学动力学,已经对1,3,5-三硝基六氢-s-三嗪(RDX)单推进剂进行了激光诱导点火的综合分析。该模型考虑了整个燃烧区域的瞬态发展,包括固相,地下两相和气相区域。该配方可适应气相的详细化学动力学和传输现象,以及地下两相区域的热分解和后续反应。为了完整性,还考虑了热力学相变和体积辐射能吸收。该分析能够处理从表面热解到稳态燃烧的整个点火过程,并将瞬时燃烧速率和表面条件视为解决方案的一部分。在大气压下于氩气中以35至600 W / cm2的CO2激光热通量进行了数值实验。在计算和测量的点火延迟之间获得了极好的一致性。推进剂的气化速率随激光强度的增加而增加,这又导致点火延迟的缩短。整个过程大致可分为六个阶段:惰性加热,热分解,一次火焰的发生,二次火焰的准备和形成以及最终建立稳态燃烧。一次火焰中的主要过程被确定为CH2O,HONO,NO2,H2CN,H2CNNO 2和HNO的消耗。在二次火焰中,NO和HCN转化为N2,CO,H2O和H2是导致气相点火的关键放热过程。

著录项

  • 作者

    Kim, Eun S.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 205 p.
  • 总页数 205
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:47:32

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号