首页> 外文学位 >Applications of wavelet packet bases to computational electromagnetics and radar imaging.
【24h】

Applications of wavelet packet bases to computational electromagnetics and radar imaging.

机译:小波包库在电磁计算和雷达成像中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Applications of wavelet packet basis to computational electromagnetics and Synthetic Aperture Radar (SAR) image processing are investigated in this dissertation. First, wavelet packet bases are used to sparsify moment matrices for facilitating the iterative solution of electromagnetic integral equations. Adaptive Wavelet Packet Transform (AWPT) is proposed to search the best wavelet packet basis for achieving maximum sparsity in the transformed moment matrix. An information cost function is chosen to measure the sparsity of the transformed moment matrix. It is found that the AWPT-transformed moment matrices have about O(N1.4) non-zero elements for typical two-dimensional (2-D) scatterers. Second, the Pre-defined Wavelet Packet (PWP) basis is designed to match the oscillatory nature of free space Green's function. With the PWP basis, the cost to search for the best basis in the AWPT approach can be avoided. Numerical results show that the number of nonzero elements in the PWP-based moment matrices grows approximately at a rate of O(N1.3) for small problem sizes and O(NlogN) for large problem sizes. Third, to accelerate the convergence rate of iterative solution of electromagnetic integral equations, an effective preconditioner is constructed for 2-D moment equations from the PWP-based moment matrix. The computational cost and memory requirement are limited to O(NlogN) for the construction of the preconditioner and the preconditioning operation. Test results demonstrate that the preconditioner is very effective for ill-conditioned scatterers such as cavity structures. Results to extend the algorithm to three-dimensional (3-D) moment equations are also presented. Finally an algorithm for SAR image clutter reduction is developed based on adaptive wavelet packet transform. It is based on the assumption that the target image can be concentrated through basis transformation, while the clutter remains statistically uncorrelated in the transform process. Thus a higher target signal-to-clutter ratio is achieved in the transform domain. The AWPT algorithm is used to perform the quadtree decomposition and determine the best wavelet packet basis that maximizes signal-toclutter ratio in the transform domain. The de-cluttered SAR images are obtained by thresholding the transformed images and inverse-transforming them back to the original image domain. The effectiveness of the new clutter-removal algorithm is demonstrated using the MSTAR data set.
机译:本文研究了小波包基础在计算电磁学和合成孔径雷达(SAR)图像处理中的应用。首先,小波包基被用于稀疏矩矩阵,以促进电磁积分方程的迭代解。提出了自适应小波包变换(AWPT),以搜索最佳小波包基础,以在变换矩矩阵中实现最大的稀疏性。选择信息成本函数来测量转换矩矩阵的稀疏性。发现对于典型的二维(2-D)散射体,AWPT变换的矩矩阵具有大约O(N1.4)个非零元素。其次,预定义的小波包(PWP)基础旨在匹配自由空间格林函数的振荡性质。使用PWP基础,可以避免在AWPT方法中寻找最佳基础的成本。数值结果表明,基于PWP的矩矩阵中的非零元素数量大约以O(N1.3)的速率增长(对于较小的问题大小),而对于O(NlogN)则在较大的问题大小处增长。第三,为加快电磁积分方程迭代解的收敛速度,从基于PWP的矩矩阵构造了二维矩方程的有效预处理器。对于预处理器的构造和预处理操作,计算成本和存储要求限于O(NlogN)。测试结果表明,该预处理器对于病态散射体(例如空腔结构)非常有效。还提出了将算法扩展到三维(3-D)矩方程的结果。最后,提出了一种基于自适应小波包变换的SAR图像杂波抑制算法。它基于这样的假设,即目标图像可以通过基本变换进行集中,而杂波在变换过程中在统计上仍然不相关。因此,在变换域中实现了更高的目标信噪比。 AWPT算法用于执行四叉树分解,并确定在变换域中最大化信噪比的最佳小波包基础。通过对转换后的图像进行阈值处理并将其逆变换回原始图像域,可以获得杂乱的SAR图像。使用MSTAR数据集证明了新的杂波去除算法的有效性。

著录项

  • 作者

    Deng, Hai.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号