首页> 外文学位 >A low-complexity construction of algebraic geometric codes better than the Gilbert-Varshamov bound.
【24h】

A low-complexity construction of algebraic geometric codes better than the Gilbert-Varshamov bound.

机译:低复杂度的代数几何代码的构造优于Gilbert-Varshamov界。

获取原文
获取原文并翻译 | 示例

摘要

One of the main goals in coding theory is to construct codes with large relative minimum distance and code rate simultaneously. The work of Gilbert and Varshamov proves that for fixed alphabet size, there exists sequence of codes with increasing length N such that the code parameters asymptotically lie on the Gilbert-Varshamov (G-V) bound. Nevertheless the description of the code is not explicit. Question as to whether one can improve the G-V bound and whether an efficient algorithm for constructing codes meeting the G-V bound exists, remained open.; A breakthrough occurred in the early 80's when Tsfasman, Vladut and Zink used Goppa's construction of algebraic geometric (AG) code, with modular curves with some asymptotically optimal properties. When the alphabet size larger than or equal to 49, the asymptotic performance of the AG codes can improve upon the G-V bound. However the definition of the modular curves is not explicit.; Another major step for efficient AG code construction is due to Garcia and Stichenoth in 1995--96. With input from Feng and Pallikaan, they succeeded in writing down explicit equations describing two families (the G-S families) of asymptotically optimal algebraic curves defined over finite field of size q2.; An algorithm using the power series approach is presented for constructing generator matrices of AG codes from the second family of algebraic curves studied by Garcia and Stichtenoth. We estimate the complexity of the algorithm for even q larger than or equal to 4. The complexity is less than ((N logq(N)) 3 operations over GF(q2). We thus have a low-complexity algorithm constructing codes better than the G-V bound. By concatenating the AG codes with binary codes of short length, we can construct binary codes with good asymptotic parameters that exceed the Zyablov bound, in low polynomial complexity O( N logq(N))3).; In practice we want to keep the size of the alphabet small, say q2 = 64 or q2 = 256. As the code length increases exponentially as we go from one curve to the next in the G-S family, only the first few codes obtained are of practical interest. The bases for the first three codes for any q are provided.
机译:编码理论的主要目标之一是同时构造具有较大的相对最小距离和编码率的编码。 Gilbert和Varshamov的工作证明,对于固定的字母大小,存在长度为N递增的代码序列,使得代码参数渐近位于Gilbert-Varshamov(G-V)边界上。但是,代码的描述并不明确。关于是否可以改善G-V界限以及是否存在一种有效的算法来构造满足G-V界限的代码的问题仍然悬而未决。在80年代初,Tsfasman,Vladut和Zink使用Goppa的代数几何(AG)代码构造以及具有一些渐近最优性质的模块化曲线时,取得了突破。当字母大小大于或等于49时,AG代码的渐近性能可以在G-V边界上得到改善。但是,模块化曲线的定义并不明确。高效的AG代码构建的另一个重要步骤是1995年-96年的Garcia和Stichenoth。在Feng和Pallikaan的输入下,他们成功地写下了明确的方程,描述了在大小为q2的有限域上定义的两个渐近最优代数曲线族(G-S族)。提出了一种使用幂级数方法的算法,该算法用于根据由Garcia和Stichtenoth研究的第二代数曲线族构建AG代码的生成矩阵。我们甚至估计q大于或等于4的算法的复杂度。复杂度小于GF(q2)的((N logq(N))3个操作。因此,我们有一个低复杂度算法构造的代码优于通过将AG码与短长度的二进制代码连接起来,我们可以以低多项式复杂度O(N logq(N))3)构造具有良好渐近参数且超过Zyablov边界的二进制代码。在实践中,我们希望将字母的大小保持较小,例如q2 = 64或q2 =256。随着GS系列中从一条曲线到另一条曲线的代码长度呈指数增长,仅获得的前几个代码是实际利益。提供了任何q的前三个代码的基数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号