首页> 外文学位 >Nanoscale eengineering of infrared plasmons in graphene.
【24h】

Nanoscale eengineering of infrared plasmons in graphene.

机译:石墨烯中红外等离激元的纳米工程。

获取原文
获取原文并翻译 | 示例

摘要

Surface plasmons are collective oscillations of free charge carriers confined in interface between two dielectrics, where the real part of the dielectric changes sign (e.g a metal-insulator interface such as gold film and air). The study of surface plasmon has been a popular research theme with potential applications utilizing the fact that the wavelength of plasmons can be many order smaller than that of the incident lights. The potential applications include transfer of information in hundreds of terahertz instead of upper limit of gigahertz in traditional wires, photodetectors with frequency range from terahertz to mid-IR, and nano-imaging. In our experiment, we use an IR near-field microscopy with resolution as low as 10nm but energy scale of micron range. This is achieved by shinning an AFM tip with infrared laser on top of the sample and collecting the scattered light from the sample. The spatial resolution proportional to where a is the size of the tip and the resolution can reach 10nm. This technique beats the diffraction limit of near-IR (10um) by over 1000x. The wavelength and amplitude damping of plasmon greatly depends on the property of free carriers in the material. While metals such as gold had been widely studied and shown promising results, a better platform with longer propagation length and shorter wavelength is needed for application. Graphenes supreme electronic transport property makes it apiii pears to be an excellent candidate for plasmonic. Graphene plasmon across a p-n junction will be discussed. Oxygen doping of graphene with different dosage via UV ozone is studied. Oxygen doping has shown promising results for graphene plasmon guide. Plasmon fringes are developed in the interior breaking the limit of boundary condition. The UV ozone treatment can be fine controlled and without damaging the graphene sheet. One can, in theory, mask and selectively dope to create a robust graphene plasmon circuit that is stable in room temperature.
机译:表面等离子体激元是限制在两个电介质之间的界面中的自由电荷载流子的集体振荡,其中电介质的实部会改变符号(例如,金属-绝缘体的界面,如金膜和空气)。表面等离子体激元的研究已经成为一个流行的研究主题,其潜在的应用是利用等离子体激元的波长可以比入射光的波长小许多数量级的事实。潜在的应用包括以数百太赫兹而不是传统导线的千兆赫兹上限传输信息,频率范围从太赫兹到中红外的光电探测器以及纳米成像。在我们的实验中,我们使用的红外近场显微镜的分辨率低至10nm,但能级为微米范围。这是通过用红外激光将AFM尖端照在样品顶部并收集样品的散射光来实现的。空间分辨率与尖端的大小成正比,而分辨率可以达到10nm。该技术比近红外(10um)的衍射极限高出1000倍以上。等离子体激元的波长和振幅阻尼在很大程度上取决于材料中自由载流子的特性。尽管已经广泛研究了诸如金之类的金属并显示出令人鼓舞的结果,但仍需要具有更长传播长度和更短波长的更好平台来进行应用。石墨烯的最高电子传输性能使其成为等离子体的极佳候选者。将讨论跨p-n结的石墨烯等离子体激元。研究了不同剂量的石墨烯通过紫外线臭氧的氧掺杂。氧掺杂已显示出对石墨烯等离子体激元导向器有希望的结果。等离子条纹在内部形成,突破了边界条件的极限。可以对UV臭氧处理进行精细控制,而不会损坏石墨烯片。从理论上讲,可以屏蔽并选择性掺杂以创建在室温下稳定的坚固的石墨烯等离子体激元电路。

著录项

  • 作者

    Deng, Haiming.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Condensed matter physics.
  • 学位 M.A.
  • 年度 2016
  • 页码 64 p.
  • 总页数 64
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号