首页> 外文学位 >Modelling water, carbon, and nitrogen dynamics in CLASS: Canadian Land Surface Scheme.
【24h】

Modelling water, carbon, and nitrogen dynamics in CLASS: Canadian Land Surface Scheme.

机译:在CLASS:加拿大陆地表面方案中模拟水,碳和氮的动力学。

获取原文
获取原文并翻译 | 示例

摘要

Land surface schemes in atmospheric General Circulation Models (GCMs) significantly affect the predicted surface climate. Over the past decade, several “second-generation” land surface schemes have emerged and dominated the modelling studies of climate by GCMs; CLASS, the Canadian Land Surface Scheme which was developed at the Canadian Climate Center for the Canadian GCM, is one of them. While it greatly improved the evaluations of land surface processes over its earlier version of the “first-generation” land surface scheme, it was realized recently that improperly prescribed vegetation parameters were the largest source of error in climate modelling.; These limitations were addressed in this thesis research by developing three modules in the current version of CLASS V2.6: SVATC—a carbon-coupled water transfer module in the soil-vegetation-atmosphere system; PLANTC&barbelow;—a dynamic plant module designed to simulate plant carbon and nitrogen processes including photosynthesis, respiration, growth and litterfall, etc.; and SOILC—a soil carbon and nitrogen module designed to simulate organic matter transformation processes in and on soil. This new version of CLASS physiologically couples plant water and carbon dynamics, implements plant litter and soil carbon biogeochemical cycles, emphasizes the role of nitrogen in land surface processes, and feeds back dynamically based vegetation parameters to the GCM. The CLASS has been improved by including carbon dioxide (CO2) flux between land surfaces and the atmosphere, thus making the predictions of climate change more realistic.; Simulations were implemented on deciduous trees. Data from the Old Aspen (Populus tremuloides) site in the Southern Study Area (SSA-OA) of the Boreal Ecosystem-Atmosphere Study (BOREAS) were used to initialize and drive the model. Comparisons show that annual root mean square error and correlation coefficient between model output and measurements for daily evapotranspiration were 0.71 mm H2O d−1 and 0.87, and for carbon exchange were 1.10 g C m−2 d−1 and 0.93. The model predicted this aspen ecosystem was a net carbon sink of 163.6 g C m−2 y−1 and 203.2 g C m −2 y−1 for 1994 and 1996, respectively. It accounted for about 16.7% of the total gross primary production (GPP) on average for the two years.
机译:大气通用环流模型(GCM)中的地表方案会显着影响预计的地表气候。在过去的十年中,出现了一些“第二代”陆地表面方案,并主导了GCM对气候的建模研究。 CLASS是由加拿大GCM的加拿大气候中心开发的“加拿大陆地表面计划”。尽管与早期的“第一代”陆地表面方案相比,它大大改善了对土地表面过程的评估,但最近人们认识到,规定不正确的植被参数是气候模拟中最大的误差来源。通过开发当前版本CLASS V2.6中的三个模块来解决这些局限性: SVATC –土壤-植被-大气系统中的碳耦合水转移模块; PLANTC&barbelow; —一个动态植物模块,旨在模拟植物的碳和氮过程,包括光合作用,呼吸作用,生长和凋落物等;和 SOILC -一种土壤碳氮模块,旨在模拟土壤中和土壤中有机物的转化过程。 CLASS的这一新版本在生理上耦合了植物的水分和碳动态,实现了植物凋落物和土壤碳的生物地球化学循环,强调了氮在地表过程中的作用,并将基于植被的动态参数反馈给GCM。通过包括在陆地表面和大气之间的二氧化碳(CO 2 )通量,对CLASS进行了改进,从而使对气候变化的预测更加现实。在落叶树上进行了模拟。北方生态系统-大气研究(BOREAS)南部研究区(SSA-OA)中的老白杨( tremuloides )站点的数据用于初始化和驱动模型。比较表明,模型产量与每日蒸散量的测量值之间的年均方根误差和相关系数分别为0.71 mm H 2 O d -1 和0.87,而碳交换量为1.10 g C m −2 d −1 和0.93。模型预测该白杨生态系统的净碳汇为163.6 g C m −2 y -1 和203.2 g C m -2 y -1 分别用于1994年和1996年。两年来,它平均约占初级生产总值(GPP)的16.7%。

著录项

  • 作者

    Wang, Shusen.;

  • 作者单位

    University of Alberta (Canada).;

  • 授予单位 University of Alberta (Canada).;
  • 学科 Agriculture Soil Science.; Environmental Sciences.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 p.2134
  • 总页数 203
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 土壤学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号