首页> 外文学位 >Sensor-based manipulation for multifingered robotic hand.
【24h】

Sensor-based manipulation for multifingered robotic hand.

机译:基于传感器的多指机器人手操作。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation addresses several important issues of multifingered manipulation. First, a unified Control System Architecture for Multifingered Manipulation (CoSAM2) is proposed. Then, capacitive tactile sensors are developed to measure contact information. Finally, from differential geometry point of view, Cartesian stiffness of multifingered robotic hand is addressed.; CoSAM2 can achieve simultaneously several objectives of multifingered manipulation including: (a) motion trajectory tracking of a grasped object; (b) improving the grasp configuration in the course of fine manipulation; and (c) optimizing grasping forces to enforce contact constraints and compensate for external object wrenches.; Given an initial and a desired final configuration of the grasped object, CoSAM2 generates the trajectory between the two configurations with a desired object velocity. Then, a kinematics based approach is used to plan motion of fingers from the desired object velocity. As this approach does not keep the grasp in optimal position, failure of manipulation could possibly result. A tactile sensor based manipulation approach is proposed. This approach uses grasp constraints to determine motion of the contact points so that the manipulation task can be achieved and the grasp configuration can be optimized. In addition, with the process of manipulation and changing of grasp configuration, finger grasping force have also to be planned and can be optimized in real time to keep the grasp in stability. A nonlinear real time grasping force optimization algorithm has been extended to multifingered manipulation with rolling constraints. The grasp map is updated in real time using tactile feedback.; In the course of multifingered manipulation, the local geometric parameters of the fingertips and object have to be updated in real time. Capacitive tactile sensors are developed to measure the contact information including contact location, contact force and curvature information. Each tactile sensor consists of a 16 x 16 capacitor array. Each tactile element is formed by an upper copper electrode and a bottom copper electrode with an elastic dielectric rubber separation. Once a force exerted on the surface of the sensor, the deflection will occur on the elastic rubber leading to change of capacitance. Measuring the capacitance change and the index of the tactel, contact location and contact force can be obtained. Furthermore, the principal curvature directions of the object can be obtained. From Montana's equations, the geometric parameters can be obtained by experiments. How to detect the local curvature information at the contact point of the object is presented. Contour following of an unknown object is addressed.; Cartesian stiffness is a geometric map which transforms a differential displacement (twist) of the robot end-effector into an incremental change of force (wrench) exerted in the end-effector. The definition of Cartesian stiffness depends on connection. Chosen a symmetric connection ∇ XY = ½[X, Y] which is compatible with any bi-invariant metric, an intrinsic definition of Cartesian stiffness is obtained by defining Hessian matrix of a potential energy function away from equilibrium. The resulting Cartesian stiffness is always symmetric even away from equilibrium.
机译:本文解决了多指操纵的几个重要问题。首先,提出了一种多手指操纵的统一控制系统架构(CoSAM 2 )。然后,开发了电容式触觉传感器以测量接触信息。最后,从微分几何学的角度,解决了多指机器人手的笛卡尔刚度。 CoSAM 2 可以同时实现多指操作的多个目标,包括:(a)抓取物体的运动轨迹跟踪; (b)在精细操纵过程中改善抓地力配置; (c)优化抓握力以施加接触约束并补偿外部物体扳手。给定所抓握物体的初始和期望的最终构形,CoSAM 2 会以期望的物体速度在两个构形之间生成轨迹。然后,基于运动学的方法用于根据所需的物体速度来计划手指的运动。由于这种方法无法将抓握保持在最佳位置,因此可能导致操作失败。提出了一种基于触觉传感器的操纵方法。该方法使用抓握约束条件来确定接触点的运动,从而可以实现操纵任务并可以优化抓握结构。另外,随着操纵和改变抓握结构的过程,还必须计划手指抓握力,并且可以实时优化手指抓握力以保持抓握的稳定性。非线性实时抓力优化算法已扩展到具有滚动约束的多指操纵。使用触觉反馈实时更新抓图。在多指操作过程中,指尖和对象的局部几何参数必须实时更新。电容式触觉传感器用于测量接触信息,包括接触位置,接触力和曲率信息。每个触觉传感器均由一个16 x 16电容器阵列组成。每个触觉元件由具有弹性介电橡胶间隔的上铜电极和下铜电极形成。一旦在传感器表面上施加力,弹性橡胶上就会发生挠曲,从而导致电容变化。可以测量电容变化和触觉指数,接触位置和接触力。此外,可以获得物体的主曲率方向。根据蒙大纳方程,可以通过实验获得几何参数。提出了如何检测物体接触点的局部曲率信息。解决了未知对象的轮廓跟随问题。笛卡尔刚度是一种几何图,它将机器人末端执行器的微分位移(扭转)转换为施加在末端执行器中的力(扳手)的增量变化。笛卡尔刚度的定义取决于连接。选择一个对称连接∇ X Y =½ [ X,Y ]与任何双不变度量兼容,即通过定义远离平衡的势能函数的Hessian矩阵来获得笛卡尔刚度。所产生的笛卡尔刚度即使远离平衡也总是对称的。

著录项

  • 作者

    Jiang, Shilong.;

  • 作者单位

    Hong Kong University of Science and Technology (People's Republic of China).;

  • 授予单位 Hong Kong University of Science and Technology (People's Republic of China).;
  • 学科 Engineering Electronics and Electrical.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号