首页> 外文学位 >Multi-dimensional and multi-resolution geometric data-structures for scientific visualization.
【24h】

Multi-dimensional and multi-resolution geometric data-structures for scientific visualization.

机译:用于科学可视化的多维和多分辨率几何数据结构。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation investigates multi-resolution and multi-dimensional geometric techniques oriented to the visualization of scientific data. The main focus is on the display of scalar fields represented as single valued functions defined on unstructured geometric domains, like simplicial complexes, or structured geometric domains, like rectilinear grids. Previous isosurface approaches can be roughly categorized in two major groups: (i) those that build off-line multi-resolution representations from the finest detail and (ii) those that build single-resolution adaptive levels of detail satisfying each time one specific error tolerance. This dissertation introduces a new on-line technique that allows one to combine the advantages of these two classes of approaches by building progressively a multi-resolution representation of the output isosurface. The scheme constructs a multi-resolution isosurface and provides at any intermediate stage continuously improved approximated representations.; One important related problem is the fast selection of particularly “meaningful” isosurfaces, like the boundaries separating different materials in a CT scan. This dissertation introduces an approach called Contour Spectrum that provides the user with a simple set of 1-dimensional plots representing exactly fundamental integral properties of the input field. For certain classes of data the Contour Spectrum reduces the number of “meaningful” isovalues that need to be tested. The user does not need to explore the entire range of scalar values of the field. The Contour Spectrum has proved valuable also for static workload analysis in the computation of high resolution isosurfaces. From the latter analysis one can determine a data partitioning scheme that guarantees both (i) good load balancing in parallel computations and (ii) minimal I/O overhead in out-of-core computations.; The last part of the dissertation addresses the problem of producing fast and intuitive rendering of scalar fields of dimension higher than three. The approach has been tested, for example, in the case of a five-dimensional molecular interaction potential. Using this rendering scheme the user can explore interactively the global structure of the potential field with respect to both translational and rotational degrees of freedom at the same time.
机译:本文研究了面向科学数据可视化的多分辨率和多维几何技术。主要焦点在于标量字段的显示,标量字段表示为在非结构化几何域(如简单复形)或结构化几何域(如直线网格)上定义的单值函数。以前的等值面方法可以大致分为两大类:(i)从最精细的细节构建离线多分辨率表示的方法;(ii)每次都满足一个特定的误差容限的单分辨率自适应细节水平的方法。本文介绍了一种新的在线技术,该技术可以通过逐步建立输出等值面的多分辨率表示来结合这两种方法的优点。该方案构造了一个多分辨率等值面,并在任何中间阶段提供了不断改进的近似表示。一个重要的相关问题是快速选择特别“有意义”的等值面,例如在CT扫描中分隔不同材料的边界。本文介绍了一种称为轮廓波谱的方法,该方法为用户提供了一组简单的一维图,这些图精确地表示了输入场的基本积分性质。对于某些类别的数据,轮廓谱减少了需要测试的“有意义”等值的数量。用户不需要浏览该字段的标量值的整个范围。轮廓波谱已经证明对于高分辨率等值面计算中的静态工作量分析也很有价值。从后面的分析中,可以确定一种数据分区方案,该方案既可以保证(i)并行计算中的良好负载平衡,又可以(ii)核外计算中的最小I / O开销。论文的最后一部分解决了生成尺寸大于3的标量场的快速直观的渲染问题。该方法已经过测试,例如在五维分子相互作用的情况下。使用此渲染方案,用户可以同时针对平移和旋转自由度交互地探索势场的全局结构。

著录项

  • 作者

    Pascucci, Valerio.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号