首页> 外文学位 >Understanding and finessing nonlinearity in electro-mechanical actuators used for intelligent vibration control.
【24h】

Understanding and finessing nonlinearity in electro-mechanical actuators used for intelligent vibration control.

机译:了解和优化用于智能振动控制的机电执行器中的非线性。

获取原文
获取原文并翻译 | 示例

摘要

The objectives of this dissertation study are (1) to gain a better understanding of the inherent nonlinearity in commonly-used transduction materials and devices for vibration control, specifically those based the piezoceramic materials, and (2) to understand its impact in the structural vibration control problem. At lower drive levels, nonlinearity in piezoceramics is dominated by irreversible rate-independent hysteresis. In this study, the applicability of and relationship between two rate-independent hysteresis models that have been used to describe hysteresis in piezoceramic transducers is investigated. It is shown that the generalized Maxwell resistive capacitor (MRC) hysteresis model and its inverse are particular subsets of the classical Preisach hysteresis model (CPM). Methods for MRC and inverse MRC online model identification of piezoceramic devices are developed along with an MRC-based framework for calculating continuous hysteretic energy loss for arbitrary loading histories. These developments are facilitated by use of the extensive mathematical framework that has been developed for Preisach models. Experimental studies on 1–3 piezoceramic composites, piezoceramic monolithic wafers and piezoceramic active fiber composites (AFC's) support the theoretical developments and assess their applicability and limitations with respect to commonly-used piezoceramic transducers.; To investigate the “smart material structure” or system with integrated transduction elements and numerous coupled dynamic degrees of freedom, the case of a monolithic piezoceramic wafer bonded to simply supported beam is investigated theoretically and experimentally. To model the hysteretic behavior of the PZT, again the rate-independent generalized MRC model is utilized. The coupled dynamic equations are developed for the nonlinear system consisting of the beam and PZT wafer that can be electrically shunted and/or electrically driven from an external voltage source for improved vibration suppression. Issues of vibratory energy transduction and dissipation in the hysteretic PZT element are investigated. A method of incorporating the MRC model in a feedforward control scheme for hysteresis compensation is also presented. Experimental studies on the simply supported beam structure with PZT support the theoretical developments. Preliminary investigations of passive, adaptive and active control concepts using the nonlinear patch and beam system help to identify areas for future research.
机译:本论文的研究目的是(1)更好地了解常用的振动控制换能材料和装置(特别是基于压电陶瓷材料的装置)固有的非线性,以及(2)了解其对结构振动的影响控制问题。在较低的驱动水平下,压电陶瓷的非线性主要由不可逆的与速率无关的迟滞决定。在这项研究中,已经研究了用于描述压电陶瓷换能器中的磁滞的两个速率无关的磁滞模型的适用性以及它们之间的关系。结果表明,广义麦克斯韦电阻电容(MRC)磁滞模型及其逆模型是经典Preisach磁滞模型(CPM)的特定子集。与基于MRC的框架一起,开发了用于压电陶瓷设备的MRC和逆MRC在线模型识别的方法,该框架可为任意载荷历史计算连续磁滞能量损失。通过使用为Preisach模型开发的广泛数学框架,可以促进这些发展。对1-3压电陶瓷复合材料,压电陶瓷整体晶片和压电陶瓷活性纤维复合材料(AFC)的实验研究支持了理论发展,并评估了它们在常用压电陶瓷换能器方面的适用性和局限性。为了研究具有集成传感元件和众多耦合动态自由度的“智能材料结构”或系统,从理论和实验上研究了将单片压电陶瓷晶片粘结到简单支撑的梁上的情况。为了模拟PZT的滞后行为,再次使用了速率无关的广义MRC模型。针对由梁和PZT晶片组成的非线性系统,开发了耦合动力学方程,可以将其与外部电压源进行电分流和/或电驱动,以改善振动抑制效果。研究了滞后PZT元件中振动能量的传导和耗散问题。还提出了一种将MRC模型合并到用于滞后补偿的前馈控制方案中的方法。 PZT简支梁结构的实验研究为理论发展提供了支持。使用非线性补丁和波束系统对被动,自适应和主动控制概念进行的初步研究有助于确定未来的研究领域。

著录项

  • 作者

    Lee, Soon-Hong.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Engineering Mechanical.; Engineering Automotive.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;自动化技术及设备;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号