首页> 外文学位 >Impact of microbial community structure on crude oil biodegradation.
【24h】

Impact of microbial community structure on crude oil biodegradation.

机译:微生物群落结构对原油生物降解的影响。

获取原文
获取原文并翻译 | 示例

摘要

Crude oil-degrading enrichment cultures were developed to investigate the impact of microbial community structure in crude oil biodegradation. Analysis of the biodegradation products of five cultures enriched from hydrocarbon impacted soils revealed extensive degradation of the saturate fraction, including recalcitrant compounds such as hopanes. Microbial analysis using denaturing gradient gel electrophoresis (DGGE) revealed differences between the communities in the five enrichment cultures, suggesting that the ability to degrade hopanes may be common to several different microorganisms.; In order to investigate the role of the n-alkanes and n-alkane-degrading organisms on microbial community structure, two cultures (enrichments A and B) were enriched simultaneously in the presence and absence of n-alkanes. Enrichment A, developed in the presence of n-alkanes, extensively degraded the saturate fraction of the oil (93%), but showed no degradation of aromatic compounds. Enrichment B, developed in the absence of n-alkanes, degraded 96% of the aromatic compounds monitored. Further analysis demonstrated that enrichment A did not degrade aromatics even in the absence of n-alkanes, while enrichment B degraded the n-alkanes. DGGE analysis of the microbial communities in these cultures revealed that although some similarities existed between the cultures, the microbial populations were significantly different and enrichment B was more diverse.; Growth on n-alkanes can be mediated by two principal uptake mechanisms, interfacial accession influenced by cell surface hydrophobicity, and enhanced solubilization, mediated by biosurfactant production. Isolates A1 and A3 were shown to produce biosurfactants, a quorum sensing regulated phenotype, and the distinct morphology of the isolates (A1 = smooth colonies and A3 = rough colonies) has been associated to hydrophobicity changes in clinical P. aeruginosa isolates. Results suggest that A1 and A3 uptake n-alkanes via interfacial accession and that the switch in morphology represents an adaptive response that increases cell surface hydrophobicity to enhance hydrophobic hydrocarbon uptake. This switch is indispensable for the utilization of n-alkanes in our system, which is required to attain the cell density threshold for AHL and biosurfactant production. Thus, cell surface hydrophobicity and quorum-sensing regulated biosurfactant production represent potential avenues for the manipulation of n-alkane-degrading populations. (Abstract shortened by UMI.)
机译:开发了降解原油的浓缩培养物,以研究微生物群落结构对原油生物降解的影响。对从受烃影响的土壤中富集的五种培养物的生物降解产物进行的分析显示,饱和级分的广泛降解,包括顽固性化合物,如hop烷。使用变性梯度凝胶电泳(DGGE)进行的微生物分析显示了五种富集培养中各群落之间的差异,这表明降解hop烷的能力可能是几种不同微生物共有的。为了研究降解italic> n -烷烃和 n -烷烃的微生物在微生物群落结构中的作用,在菌落中同时富集了两种培养物(浓缩物A和B)。是否存在 n 烷烃。在 n 烷烃的存在下产生的富集A可使油的饱和级分(93%)广泛降解,但未显示芳族化合物的降解。在不存在 n 烷烃的情况下产生的富集B使所监测的96%的芳族化合物降解。进一步的分析表明,即使在不存在 n 烷烃的情况下,富集A也不会降解芳烃,而富集B会降解 n 烷烃。 DGGE对这些培养物中微生物群落的分析表明,尽管两种培养物之间存在某些相似之处,但微生物种群却存在显着差异,而富集B则更加多样化。在 n -烷烃上的生长可以通过两种主要的摄取机制来介导,即受细胞表面疏水性影响的界面结合,以及由生物表面活性剂的产生介导的增溶作用。分离株A1和A3已显示产生生物表面活性剂,群体感应调节表型,并且分离株的独特形态(A1 =光滑菌落,A3 =粗糙菌落)与临床P中的疏水性变化有关。铜绿假单胞菌。结果表明,A1和A3通过界面吸收摄取 n -烷烃,形态上的转换代表了一种适应性反应,该反应增加了细胞表面的疏水性,从而增强了疏水性碳氢化合物的吸收。对于在我们的系统中使用 n 烷烃来说,此开关是必不可少的,这对于达到AHL和生产生物表面活性剂的细胞密度阈值是必需的。因此,细胞表面疏水性和群体感应调节的生物表面活性剂的生产代表了操纵 n -烷烃降解种群的潜在途径。 (摘要由UMI缩短。)

著录项

  • 作者

    Frontera-Suau, Roberto.;

  • 作者单位

    Medical University of South Carolina.;

  • 授予单位 Medical University of South Carolina.;
  • 学科 Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 232 p.
  • 总页数 232
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 微生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号