首页> 外文学位 >Photochemistry and transport of tropospheric ozone and its precursors in urban and remote environments.
【24h】

Photochemistry and transport of tropospheric ozone and its precursors in urban and remote environments.

机译:对流层臭氧及其前体在城市和偏远环境中的光化学和运输。

获取原文
获取原文并翻译 | 示例

摘要

Tropospheric ozone (O3) adversely affects human health, reduces crop yields, and contributes to climate forcing. To limit these effects, the processes controlling O3 abundance as well as that of its precursor molecules must be fully characterized. Here, I examine three facets of O 3 production, both in heavily polluted and remote environments. First, using in situ observations from the DISCOVER-AQ field campaign in the Baltimore/Washington region, I evaluate the emissions of the O 3 precursors CO and NOx (NOx = NO + NO2) in the National Emissions Inventory (NEI). I find that CO/NOx emissions ratios derived from observations are 21% higher than those predicted by the NEI. Comparisons to output from the CMAQ model suggest that CO in the NEI is accurate within 15 +/- 11%, while NOx emissions are overestimated by 51-70%, likely due to errors in mobile sources. These results imply that ambient ozone concentrations will respond more efficiently to NOx controls than current models suggest. I then investigate the source of high O3 and low H2O structures in the Tropical Western Pacific (TWP). A combination of in situ observations, satellite data, and models show that the high O3 results from photochemical production in biomass burning plumes from fires in tropical Southeast Asia and Central Africa; the low relative humidity results from large-scale descent in the tropics. Because these structures have frequently been attributed to mid-latitude pollution, biomass burning in the tropics likely contributes more to the radiative forcing of climate than previously believed. Finally, I evaluate the processes controlling formaldehyde (HCHO) in the TWP. Convective transport of near surface HCHO leads to a 33% increase in upper tropospheric HCHO mixing ratios; convection also likely increases upper tropospheric CH 3OOH to ~230 pptv, enough to maintain background HCHO at ~75 pptv. The long-range transport of polluted air, with NO four times the convectively controlled background, intensifies the conversion of HO2 to OH, increasing OH by a factor of 1.4. Comparisons between the global chemistry model CAM-Chem and observations show that consistent underestimates of HCHO by CAM-Chem throughout the troposphere result from underestimates in both NO and acetaldehyde.
机译:对流层臭氧(O3)对人类健康产生不利影响,降低了作物产量,并加剧了气候变化。为了限制这些影响,必须充分表征控制O3丰度及其前体分子丰度的过程。在这里,我研究了在严重污染和偏远环境中O 3产生的三个方面。首先,我使用巴尔的摩/华盛顿地区DISCOVER-AQ野外活动的现场观测资料,评估了国家排放清单(NEI)中O 3前体CO和NOx的排放量(NOx = NO + NO2)。我发现,根据观察得出的CO / NOx排放比比NEI预测的高21%。与CMAQ模型输出的比较表明,NEI中的CO准确度在15 +/- 11%之内,而NOx排放量高估了51-70%,这可能是由于移动源的误差所致。这些结果表明,与当前模型所建议的相比,环境臭氧浓度将对NOx控制产生更有效的响应。然后,我调查了热带西太平洋(TWP)中高O3和低H2O结构的来源。实地观测,卫星数据和模型的结合表明,高O3来自热带东南亚和中非大火中生物质燃烧烟羽中的光化学生产;低的相对湿度是热带地区大规模下降的结果。由于这些结构经常被归因于中纬度污染,因此热带地区的生物质燃烧可能比以前认为的对气候的辐射强迫贡献更大。最后,我评估了TWP中控制甲醛(HCHO)的过程。近地表HCHO的对流输运导致对流层HCHO混合比增加33%。对流还可能将对流层高层CH 3OOH增加到〜230 pptv,足以将背景HCHO维持在〜75 pptv。 NO的对流控制背景浓度为NO的四倍时,被污染的空气的长距离输送会增强HO2向OH的转化,使OH增加1.4倍。全球化学模型CAM-Chem与观测值之间的比较表明,整个对流层中CAM-Chem对HCHO的一致低估是由于NO和乙醛的低估所致。

著录项

  • 作者

    Anderson, Daniel Craig.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Atmospheric chemistry.;Atmospheric sciences.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 207 p.
  • 总页数 207
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号