首页> 外文学位 >Numerical Techniques for the Solution of Partial Differential and Integral Equations on Irregular Domains with Applications to Problems in Electrowetting.
【24h】

Numerical Techniques for the Solution of Partial Differential and Integral Equations on Irregular Domains with Applications to Problems in Electrowetting.

机译:不规则域上偏微分和积分方程解的数值技术及其在电润湿问题中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Digital microfluidics is a rapidly growing field wherein droplets are manipulated for use in small-scale applications such as variable focus lenses, display technology, fiber optics, and lab-on-a-chip devices. There has been considerable interest in digital microfluidics and the various methods for liquid actuation by thermal, chemical, and electrical means, where each of the actuation methods make use of the favorable scaling relationship of surface tension forces at the micro scale.;Another increasingly important field is addressing the ever growing need for improved heat transfer techniques in the next generation of electronic devices. As device size decreases and device efficiency increases, high heat flux removal capabilities (100 - 1000 W/cm2) are critical to achieve the lower device operating temperatures necessary to ensure reliably and performance.;In this thesis, we investigate the nature of the forcing that occurs in the transport of liquid drops by electrical means. The effects of system parameters on the force density and its net integral are considered in the case of dielectrophoresis (insulating fluids) and electrowetting-on-dielectric (conductive fluids). Moreover, we explore the effectiveness of a new heat transfer technique called digitized heat transfer (DHT), where droplets are utilized to enhance the removal of heat from electronic devices. Numerical computations of the Nusselt number for these types of flows provide strong evidence of the effectiveness of DHT in comparison to continuous flows.;These two physical phenomena are but two examples that illustrate the growing need for numerical techniques that simply and efficiently handle problems on irregular domains. We present two algorithms appropriate in this environment. The first extends the recently introduced Immersed Boundary Projection Method (IBPM), originally developed for the incompressible Navier-Stokes equations, to elliptic and parabolic problems on irregular domains in a second-order accurate manner. The second algorithm employs a boundary integral approach to the solution of elliptic problems in three-dimensional axisymmetric domains with non-axisymmetric boundary conditions. By using Fourier transforms to reduce the three-dimensional problem to a series of problems defined on the generating curve of the surface, a Nystrom discretization employing generalized Gaussian quadratures can be applied to rapidly compute the solution with high accuracy. We demonstrate the high order nature of the discretization. An accelerated technique for computing the kernels of the reduced integral equations is developed for those kernels arising from Laplace's equation, overcoming what was previously the major obstacle in the solution to such problems. We extend this technique to a wide class of kernels, with a particular emphasis on those arising from the Helmholtz equation, and provide strong numerical evidence of the efficiency of this approach. By combining the above approach with the Fast Multipole Method, we develop an efficient and accurate technique for solving boundary integral equations on multiply connected domains.
机译:数字微流控技术是一个快速发展的领域,其中操纵液滴以用于小规模应用,例如可变焦距透镜,显示技术,光纤和芯片实验室设备。人们对数字微流体以及通过热,化学和电手段进行液体致动的各种方法有相当大的兴趣,其中每种致动方法都利用了微尺度的表面张力的有利比例关系。领域正在满足下一代电子设备中对改进的传热技术不断增长的需求。随着器件尺寸的减小和器件效率的提高,高的热通量去除能力(100-1000 W / cm2)对于实现更低的器件工作温度以确保可靠性和性能至关重要,这一点至关重要。通过电气方式输送液滴时会发生这种情况。在介电电泳(绝缘流体)和介电电润湿(导电流体)的情况下,应考虑系统参数对力密度及其净积分的影响。此外,我们探索了一种称为数字化传热(DHT)的新传热技术的有效性,该技术利用液滴来增强电子设备的散热能力。这些类型的流的Nusselt数的数值计算提供了与连续流相比DHT有效性的有力证据;这两个物理现象只是两个示例,它们说明了对简单有效地解决不规则问题的数值技术的日益增长的需求域。我们提出了两种适用于这种环境的算法。第一种方法是将最近引入的浸入边界投影方法(IBPM)扩展为二阶精确方式,该方法最初是为不可压缩的Navier-Stokes方程开发的,它适用于不规则域上的椭圆和抛物线问题。第二种算法采用边界积分法求解具有非轴对称边界条件的三维轴对称域中的椭圆问题。通过使用傅立叶变换将三维问题简化为在曲面的生成曲线上定义的一系列问题,可以使用采用广义高斯正交的Nystrom离散化来快速,高精度地计算解。我们证明了离散化的高阶性质。针对拉普拉斯方程产生的那些核,开发了一种用于计算简化积分方程的核的加速技术,从而克服了以前解决此类问题的主要障碍。我们将这一技术扩展到一类广泛的内核中,尤其着重于从亥姆霍兹方程式产生的内核,并为该方法的有效性提供了有力的数值证据。通过将上述方法与快速多极方法相结合,我们开发了一种高效且准确的技术来求解多重连通域上的边界积分方程。

著录项

  • 作者

    Young, Patrick McKendree.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Applied mathematics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号