首页> 外文学位 >Coupled cross-flow and in-line vortex-induced vibration of elastic cable systems.
【24h】

Coupled cross-flow and in-line vortex-induced vibration of elastic cable systems.

机译:弹性电缆系统的横流和轴向涡流耦合振动耦合。

获取原文
获取原文并翻译 | 示例

摘要

Flow-induced vibrations caused by vortex shedding from structures have been observed in diverse engineering applications including ocean engineering structures. The focus of many of prior studies has been on understanding the vortex-induced vibrations (VIV) solely in the lift direction (one-dimensional vibrations). The objective of this research is to extend our understanding to two-dimensional VIV by simultaneously considering the in-line and cross-flow responses of elastic cable systems. Coupled cross-flow and in-line vibrations are analyzed for two different cable applications: (1) cable suspensions, and (2) cable-buoy systems. Three coupling mechanisms are identified and include: (1) cable geometric nonlinearities, (2) coupled unsteady lift and drag, and (3) amplitude dependent mean drag.; Coupled cross-flow and in-line VIV is first investigated by focusing on two-dimensional motions local to a cable equilibrium. Prior experiments on spring supported cylinders confirm that coupled cross-flow/in-line responses exist by virtue of the simultaneous excitation in these two directions. Coupled cross-flow and in-line VIV is modeled by incorporating cable structural nonlinearities, and coupled fluid lift and drag. Inclusion of cable geometric coupling alone leads to coupled periodic responses that differ qualitatively (i.e., in number and stability of periodic motions) when compared to those of the decoupled models. Inclusion of direct fluid coupling produces non-planar figure eight motions of the cable cross section that exhibit similar characteristics to those previously measured for spring supported cylinders.; Another coupled response results from the amplified mean drag exerted on the cable during lock-in. As the drag increases during lock-in, the cable will slowly drift downstream. This slow drifting motion may appreciably alter the cable geometry and tension, the natural frequencies of the cable, the flow velocity relative to the cable. If these changes are significant, the drift may alter, and even disrupt, the resonance condition for lock-in. If lock-in is disrupted, the mean drag is reduced and the cable may slowly drift upstream returning to its original state. The whole process may then repeat. Theoretical models for both suspended cables and cable-buoy systems are derived that describe the nonlinear response of the cable to fluid excitation (VIV) and increased drag. These cable/fluid models capture both fast (small amplitude) vibrations due to periodic vortex shedding and slow (large amplitude) drifting motion due to increased drag.
机译:在包括海洋工程结构在内的各种工程应用中,已经观察到由结构涡流脱落引起的流动引起的振动。许多先前研究的重点一直是仅在升力方向(一维振动)上理解涡激振动(VIV)。这项研究的目的是通过同时考虑弹性电缆系统的在线和横流响应,将我们的理解扩展到二维VIV。针对两种不同的电缆应用分析了交叉流和管道内耦合振动:(1)电缆悬架和(2)电缆浮标系统。确定了三种耦合机制,包括:(1)电缆几何非线性,(2)耦合的非稳态升力和阻力,以及(3)幅度相关的平均阻力。首先通过关注电缆平衡局部的二维运动来研究横流和管道VIV耦合问题。先前在弹簧支撑的气缸上进行的实验证实,由于在这两个方向上同时激励,因此存在耦合的错流/管路响应。横流和管道VIV耦合是通过结合电缆结构非线性以及耦合的流体升力和阻力来建模的。与解耦模型相比,仅包含电缆几何耦合会导致耦合的周期性响应在质量上有所不同(即周期性运动的数量和稳定性)。包括直接液力偶合会产生电缆横截面的非平面八字形运动,该运动表现出与先前对弹簧支撑圆柱体测量的相似的特性。另一个耦合响应是由锁定期间施加在电缆上的放大的平均阻力引起的。在锁定过程中,随着阻力的增加,电缆将缓慢向下游漂移。这种缓慢的漂移运动可能会明显改变电缆的几何形状和张力,电缆的固有频率,相对于电缆的流速。如果这些变化很明显,则漂移可能会改变,甚至破坏用于锁定的共振条件。如果锁定被破坏,则平均阻力将减小,电缆可能会缓慢向上游漂移,返回其原始状态。然后可以重复整个过程。得出了悬吊电缆和电缆浮标系统的理论模型,它们描述了电缆对流体激励(VIV)和增加的阻力的非线性响应。这些电缆/流体模型捕获了由于周期性涡旋脱落而引起的(小幅度)振动,以及由于阻力增加而引起的(大幅度)漂移运动。

著录项

  • 作者

    Kim, WanJun.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号