首页> 外文学位 >Analysis of single DNA molecules using a nanopore detector.
【24h】

Analysis of single DNA molecules using a nanopore detector.

机译:使用纳米孔检测器分析单个DNA分子。

获取原文
获取原文并翻译 | 示例

摘要

Individual DNA and RNA molecules cause ionic current blockade signatures when driven through an alpha-hemolysin channel by an applied potential. This discovery suggests that a nano-scale pore could in principle provide direct, high-speed sequencing of single DNA or RNA molecules. Early investigations demonstrated that the single-stranded polymer traversal rate of 1--3 nucleotides per microsecond was too fast to resolve nucleotide sequences using standard patch clamp equipment. In order to increase resolution, we investigated methods to lengthen the DNA interaction with the pore. We first tested whether base pairing in a single strand of DNA would slow translocation. We found that a hairpin structure with at least three base pairs inserted in the middle of a forty-nucleotide Poly-dC strand measurably slowed the translocation time compared to a single linear stand with the same number of nucleotides. Single strands of DNA containing 2- to 10-base-pair hairpin structures increased blockade duration as a function of the number of base pairs in the hairpin stem; differences as small as two base pairs could be distinguished. Resolution of single base pair and single nucleotide differences was achieved when we examined blunt-ended hairpins, in which duplex stem length, base-pair mismatches, and loop length could be resolved on a millisecond time-scale. The alpha-hemolysin nanopore was particularly sensitive to differences at the terminus of a 9bp hairpin stein. Individual blockade signatures allowed discrimination of Watson-Crick base pairs and mismatches at the terminal position. Thermodynamic analysis of molecular stability accounted in large part for this sensitivity to small differences in structure. Several mechanisms are explored to explain the complex interaction between DNA, ionic current and the alpha-hemolysin pore.
机译:当单个DNA和RNA分子被施加的电势驱动通过α-溶血素通道时,会导致离子电流阻断信号。这一发现表明,纳米级的孔原则上可以提供单个DNA或RNA分子的直接,高速测序。早期研究表明,每微秒1--3个核苷酸的单链聚合物穿越速度太快,无法使用标准的膜片钳设备分辨核苷酸序列。为了提高分辨率,我们研究了延长DNA与孔的相互作用的方法。我们首先测试了单链DNA中的碱基配对是否会减慢易位性。我们发现,与具有相同核苷酸数量的单个线性支架相比,在四十个核苷酸的Poly-dC链中间插入至少三个碱基对的发夹结构可观地减慢了转位时间。含有2到10个碱基对的发夹结构的DNA单链,根据发夹茎中碱基对数目的增加而增加了封锁持续时间。可以区分出只有两个碱基对的差异。当我们检查平末端发夹时,单碱基对和单核苷酸差异的分辨率得以实现,其中双链茎长度,碱基对错配和环长度可以在毫秒的时间内解决。 α-溶血素纳米孔对9bp发夹型斯坦因末端的差异特别敏感。单独的封锁标志允许区分沃森-克里克碱基对和末端位置不匹配。分子稳定性的热力学分析在很大程度上解释了这种对结构小差异的敏感性。探索了几种机制来解释DNA,离子电流和α-溶血素孔之间的复杂相互作用。

著录项

  • 作者

    Vercoutere, Wenonah Annrea.;

  • 作者单位

    University of California, Santa Cruz.;

  • 授予单位 University of California, Santa Cruz.;
  • 学科 Chemistry Biochemistry.; Biophysics General.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号