首页> 外文学位 >Effect of temperature and microstructure on tensile and tensile creep properties of titanium silicon carbide in air.
【24h】

Effect of temperature and microstructure on tensile and tensile creep properties of titanium silicon carbide in air.

机译:温度和微观结构对空气中钛碳化硅的拉伸和拉伸蠕变性能的影响。

获取原文
获取原文并翻译 | 示例

摘要

The ternary carbide, Ti3SiC2, combines some of the best attributes of ceramics and metals. It is stable in inert atmospheres to temperatures above 2200°C, stiff and yet is readily machinable, oxidation, fatigue and thermal shock resistant and damage tolerant. Thus, Ti3SiC 2 is good candidate material for high temperature structural application. The aim of this work was to characterize its tensile and tensile creep properties.; The mechanical behavior of Ti3SiC2 is characterized by a brittle-to-ductile (BTD) transition that is a function of strain rate. Its high strain rate sensitivity (≈0.50–0.6) is in the range that is more typical for superplastic materials, although it does not exhibit other attributes of superplasticity. Polycrystalline samples do not exhibit linear elastic behavior in tension even at room temperature. Room temperature loading-unloading tests result in closed hysteresis loops when the stress exceeds ≈120 MPa, suggesting that the mechanical response can be described as anelastic (viscoelastic). At high temperatures (1200°C) intense stress relaxation takes place; cycling loading-unloading tests at high temperature and low strain rates, demonstrate that the samples continue to elongate even during unloading, suggesting that Ti3SiC2 deforms viscoplastically.; Tensile creep curves exhibit primary, steady state and tertiary regimes. The minimum creep rate can be represented by power law equation with a stress exponent of 1.5 for fine-grained (3–5 μm) samples, and 2 for coarse-grained (100–300 μm) ones. For both microstructures the activation energy for creep is ≈450 kJ/mol. The dependence on grain size is quite weak, implying that diffusion creep and/or creep mechanisms based on grain boundary sliding do not play a central role. Results of strain transient dip tests suggest that large internal stresses are developed during creep. Those internal stresses are believed to result in recoverable (anelastic) strains during unloading. The response on small stress decreases in strain-transient creep tests suggests that the steady state creep is recovery controlled.; Finally, it is important to note that the mechanical response of Ti 3SiC2 is quite similar to hexagonal ice. Both materials, if loaded rapidly are brittle, but if loaded slowly are quite plastic. This stems from the fact that both are plastically very anisotropic; deformation occurs overwhelmingly by basal slip. In both cases, stress concentrations, and the rate at which they can be relaxed, dictate the nature of the mechanical response.
机译:三元碳化物Ti 3 SiC 2 结合了陶瓷和金属的一些最佳特性。它在2200°C以上的惰性气氛中稳定,坚硬,并且易于机加工,抗氧化,抗疲劳和热冲击,并具有耐损伤性。因此,Ti 3 SiC 2 是高温结构应用的良好候选材料。这项工作的目的是表征其拉伸性能和拉伸蠕变性能。 Ti 3 SiC 2 的力学行为的特征是脆​​性-延性(BTD)转变,它是应变速率的函数。尽管它不具有超塑性的其他属性,但其高应变率敏感性(&p; 0.50–0.6)在超塑性材料的典型范围内。即使在室温下,多晶样品也不会表现出线性的拉伸弹性行为。当应力超过≈ 120 MPa时,室温的装卸测试会导致闭合的磁滞回线,这表明机械响应可以描述为非弹性(粘弹性)。在高温(1200°C)下会发生剧烈的应力松弛。在高温和低应变率下进行的循环加载-卸载测试表明,即使在卸载过程中,样品仍继续伸长,这表明Ti 3 SiC 2 发生了塑性变形。拉伸蠕变曲线表现出主要,稳态和第三种状态。最小蠕变率可以用幂律方程表示,细颗粒(3-5μm)的应力指数为1.5,粗颗粒(100-300μm)的应力指数为2。对于这两种微观结构,蠕变的活化能为≈ 450 kJ / mol。对晶粒尺寸的依赖性很弱,这意味着基于晶粒边界滑动的扩散蠕变和/或蠕变机制没有发挥中心作用。应变瞬态浸入试验的结果表明,蠕变过程中会产生较大的内应力。那些内应力被认为在卸载过程中导致可恢复的(弹性)应变。应变瞬态蠕变试验中对小应力减小的响应表明,稳态蠕变受恢复控制。最后,需要注意的是Ti 3 SiC 2 的机械响应与六角形冰非常相似。如果快速加载,两种材料都是脆性的,但是如果缓慢加载,则它们是相当塑料的。这是因为两者在塑性上都非常各向异性。基底滑移绝大多数发生变形。在这两种情况下,应力集中和应力释放的速率决定了机械响应的性质。

著录项

  • 作者

    Radovic, Miladin.;

  • 作者单位

    Drexel University.;

  • 授予单位 Drexel University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号