首页> 外文学位 >Mechanisms and modulation of nonsynaptic epileptiform activity.
【24h】

Mechanisms and modulation of nonsynaptic epileptiform activity.

机译:非突触癫痫样活动的机制和调节。

获取原文
获取原文并翻译 | 示例

摘要

Non-synaptic interactions between cells in the CNS have been eclipsed by our increasingly detailed understanding of chemical synapses, however, they play a significant role in modulating both normal and pathological brain function. In particular, non-synaptic mechanisms (electronic and ephaptic interaction, intracellular and extracellular ionic transients, osmolarity, pH, etc.) play a critical role in epileptic seizure threshold. Thus, modulation of these mechanisms represents a powerful approach to controlling seizures. Furthermore, “non-synaptic” epileptiform activity, which does not require synaptic function for event initiation, propagation, and termination, has been demonstrated in-vitro. Therefore, we investigated those mechanisms contributing to non-synaptic epileptogenesis and the feasibility of controlling seizures by modulating these mechanisms.; The role of different non-synaptic interactions in modulating non-synaptic burst frequency, amplitude, and duration was determined to examine factors contributing to non-synaptic burst initiation, size, and termination, and the potential of developing anti-convulsants targeting each of these factors. Antagonists of neuronal excitability, gap junctions, and potassium channels modulated burst frequency, amplitude, and duration differently and could also suppress spontaneous bursting.; Those conditions sufficient for generating non-synaptic activity were studied to further characterize the mechanisms of non-synaptic epileptogenesis and the potential of such genesis in-vivo. Cd+2, a Ca+2 channel antagonist, and Veratridine, a sodium channel enhancer, in the presence of increased neuronal excitability and normal (2 mM) Ca+2 levels, induced spontaneous non-synaptic epileptiform activity. These results showed that a reduction in extracellular Ca +2 is not required for non-synaptic bursting and that specific channel defects could potentially lead to non-synaptic bursting in-vivo.; High frequency electric fields suppress epileptiform activity in-vitro via a non-synaptic mechanism. This mechanism was found to be neuronal depolarization block induced by extracellular potassium buildup, and may explain the anti-convulsant effects of clinical high frequency deep brain stimulation (DBS).; Together, the results of these studies, provide powerful insight into the mechanisms of non-synaptic epileptogenesis and DBS, and emphasize the need to further explore the synaptic dependence of seizures in-vivo as well as the feasibility of controlling seizures with non-synaptic treatments.
机译:我们对化学突触的日益详细的了解已使中枢神经系统细胞之间的非突触相互作用黯然失色,但是,它们在调节正常和病理性脑功能中都起着重要作用。特别是,非突触机制(电子和神经元相互作用,细胞内和细胞外离子瞬态,渗透压,pH等)在癫痫发作阈值中起关键作用。因此,调节这些机制代表了控制癫痫发作的有效方法。此外,体外已经证明了“非突触”癫痫样活动,该活动不需要突触功能来进行事件的起始,传播和终止。因此,我们研究了那些有助于非突触性癫痫发生的机制,以及通过调节这些机制控制癫痫发作的可行性。确定了不同的非突触相互作用在调节非突触爆发频率,幅度和持续时间中的作用,以检查促成非突触爆发起始,大小和终止的因素,以及开发针对每个突触爆发的抗惊厥药的潜力因素。神经元兴奋性,间隙连接和钾离子通道的拮抗物以不同方式调节猝发频率,幅度和持续时间,还可以抑制自发性猝发。对那些足以产生非突触活性的条件进行了研究,以进一步表征非突触癫痫发生的机制以及这种发生的可能性。在神经元兴奋性增加和正常(2 mM)Ca 存在的情况下,Ca +2 通道Cd +2 和钠通道增强剂Veratridine +2 水平诱导自发的非突触癫痫样活动。这些结果表明,非突触爆发不需要胞外Ca +2 的减少,并且特定的通道缺陷可能潜在地导致非突触爆发体内。 ;高频电场通过非突触机制抑制体外癫痫样活动。该机制被认为是细胞外钾积累引起的神经元去极化阻滞,并且可以解释临床高频深部脑刺激(DBS)的抗惊厥作用。这些研究的结果在一起,为非突触性癫痫发生和DBS的机制提供了有力的见解,并强调有必要进一步探讨癫痫发作的发作性依赖,以及其可行性。通过非突触治疗控制癫痫发作。

著录项

  • 作者

    Bikson, Marom.;

  • 作者单位

    Case Western Reserve University.;

  • 授予单位 Case Western Reserve University.;
  • 学科 Health Sciences Mental Health.; Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 医学心理学、病理心理学;神经科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号