首页> 外文学位 >Numerical simulation of elastic, viscoelastic, and granular materials.
【24h】

Numerical simulation of elastic, viscoelastic, and granular materials.

机译:弹性,粘弹性和粒状材料的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

Practical time steps in today's state-of-the-art simulators typically rely on Newton's method to solve large systems of nonlinear equations. In practice, this works well for small time steps but is unreliable at large time steps at or near the frame rate, particularly for difficult or stiff simulations. Recasting backward Euler as a minimization problem allows Newton's method to be stabilized by standard optimization techniques. The resulting solver is capable of solving even the toughest simulations at the 24Hz frame rate and beyond. Simple collisions can be incorporated directly into the solver through constrained minimization without sacrificing efficiency. Several collision formulations are presented including for self collisions and collisions against scripted bodies, which are designed for the unique demands of this solver. Finally the Material Point Method (MPM) can be formulated to use the solver, and we present formulations for its use for simulating various materials.;For simulating viscoelastic fluids, foams and sponges, we design our discretization from the upper convected derivative terms in the evolution of the left Cauchy-Green elastic strain tensor. We combine this with an Oldroyd-B model for plastic flow in a complex viscoelastic fluid. While the Oldroyd-B model is traditionally used for viscoelastic fluids, we show that its interpretation as a plastic flow naturally allows us to simulate a wide range of complex material behaviors. In order to do this, we provide a modification to the traditional Oldroyd-B model that guarantees volume preserving plastic flows. Our plasticity model is remarkably simple (foregoing the need for the singular value decomposition (SVD) of stresses or strains). We show that implicit time stepping can be achieved with an optimization based approach and that this allows for high resolution simulations at practical simulation times.;We demonstrate that the Drucker-Prager plastic flow model combined with a Hencky-strain-based hyperelasticity accurately recreates a wide range of visual sand phenomena with moderate computational expense. We use the Material Point Method (MPM) to discretize the governing equations for its natural treatment of contact, topological change and history dependent constitutive relations. The Drucker-Prager model naturally represents the frictional relation between shear and normal stresses through a yield stress criterion. We develop a stress projection algorithm used for enforcing this condition with a non-associative flow rule that works naturally with both implicit (non-optimization based) and explicit time integration. We demonstrate the efficacy of our approach on examples undergoing large deformation, collisions and topological changes necessary for producing modern visual effects.
机译:当今最先进的模拟器中的实际时间步长通常依赖于牛顿法来求解大型非线性方程组。实际上,这对于较小的时间步长效果很好,但是在帧速率或接近帧率的较大的时间步长效果不可靠,尤其是对于困难或僵硬的仿真而言。将后向Euler重铸为最小化问题可以使牛顿方法通过标准优化技术得到稳定。最终的求解器甚至能够以24Hz甚至更高的帧速率求解最困难的仿真。通过限制最小化,可以将简单的碰撞直接合并到求解器中,而不会牺牲效率。提出了几种碰撞公式,包括针对自碰撞和与脚本实体的碰撞,这些碰撞公式是针对此求解器的独特需求而设计的。最后,可以将材料点方法(MPM)公式化为可使用求解器的形式,并提供用于模拟各种材料的公式。为模拟粘弹性流体,泡沫和海绵,我们从上对流导数项设计离散化左柯西-格林弹性应变张量的演化。我们将其与Oldroyd-B模型相结合,以在复杂的粘弹性流体中进行塑性流动。尽管Oldroyd-B模型传统上用于粘弹性流体,但我们表明,将其解释为塑性流动自然可以使我们模拟各种复杂的材料行为。为此,我们对传统的Oldroyd-B模型进行了修改,以确保保留塑料流量。我们的可塑性模型非常简单(无需进行应力或应变的奇异值分解(SVD))。我们展示了基于优化的方法可以实现隐式时间步长,并且可以在实际仿真时间进行高分辨率仿真;我们证明了Drucker-Prager塑性流模型与基于Hencky应变的超弹性相结合可以准确地重建广泛的视觉沙尘现象,且计算量适中。我们使用材料点方法(MPM)离散化控制方程式,以自然处理接触,拓扑变化和历史依赖的本构关系。 Drucker-Prager模型通过屈服应力准则自然地表示了剪切应力与法向应力之间的摩擦关系。我们开发了一种应力投影算法,该算法用于通过非关联流规则来强制执行此条件,该规则自然适用于隐式(基于非优化)和显式时间积分。我们在经历大变形,碰撞和产生现代视觉效果所必需的拓扑变化的示例上证明了我们方法的有效性。

著录项

  • 作者

    Gast, Theodore Finn.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Applied mathematics.;Computer science.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号