首页> 外文学位 >Upper-truncated power laws and self-similar criticality in geophysical processes.
【24h】

Upper-truncated power laws and self-similar criticality in geophysical processes.

机译:地球物理过程中的上截断幂定律和自相似临界度。

获取原文
获取原文并翻译 | 示例

摘要

Cumulative number-size distributions associated with many natural phenomena follow a power law. A data set that follows a power law may be fractal since both power laws and fractals are scale invariant. For many data sets of natural processes, the cumulative number-size distribution exhibits a “fall-off” from a power law as the measured object size increases. Previous attempts to analyze such distributions have often either ignored the fall-off region or described this region with a different function. We show that when a data set is abruptly truncated at large object size, fall-off from a power law is expected for the cumulative distribution. We derive functions to describe this fall-off for both linearly and logarithmically binned data. These functions lead to a generalized function, the upper-truncated power law, that is independent of binning method. Fitting the upper-truncated power law to a cumulative number-size distribution determines the parameters of the power law, thus providing the scaling exponent of the data. Using the upper-truncated power law, we analyze distributions associated with the following natural processes: forest fire areas in the Australian Capital Territory, fault offsets in the Vernejoul coal field, hydrocarbon volumes in the Frio Strand Plain exploration play, fault lengths on the plains of Venus, earthquake magnitudes associated with subduction of the Nazca plate, and hotspot seamount volumes in the Easter Island/Salas y Gomez seamount chain (ESC). In all cases, the upper-truncated power law provides a better description of the data than does a single power law. Applying the upper-truncated power law to earthquake cumulative frequency-magnitude distributions provides new insight into the reported change in b-value preceding large earthquakes. To understand hotspot seamount volume distributions, we develop a model where uniform energy input produces events initiated on a self-similar distribution of critical cells. We call this model Self-Similar Criticality (SSC). By allowing the spatial distribution of magma migration to be self-similar, the SSC model recreates the observed ESC seamount volume distribution. The SSC model may provide a connection between fractal geometry and observed power law distributions for other natural systems such as forest fires and landslides.
机译:与许多自然现象相关的累积数量大小分布遵循幂律。遵循幂定律的数据集可能是分形的,因为幂定律和分形都是标度不变的。对于自然过程的许多数据集,随着测量对象大小的增加,累积数量大小分布表现出幂律的“下降”。先前分析这种分布的尝试通常要么忽略掉落区域,要么用不同的功能描述该区域。我们显示出,当数据集在大对象尺寸下突然被截断时,对于累积分布,期望从幂定律下降。我们导出函数来描述线性和对数合并数据的下降。这些函数导致独立于合并方法的广义函数,即上截断的幂定律。将上截断的幂定律拟合为累积的数字大小分布可确定幂律的参数,从而提供数据的缩放指数。使用上截断的幂定律,我们分析了与以下自然过程相关的分布:澳大利亚首都地区的森林火灾地区,韦尔内茹尔煤田的断层偏移量,弗里奥斯特兰德平原勘探区的油气量,平原上的断层长度金星的变化,与纳斯卡板块俯冲有关的地震烈度以及复活节岛/萨拉斯·戈麦斯海山链(ESC)中的热点海山体积。在所有情况下,与单个幂定律相比,高位截断幂定律对数据的描述更好。将上截断的幂定律应用于地震累积的频率-幅度分布,可以为大地震之前报道的 b 值变化提供新的见解。为了了解热点海山的体积分布,我们开发了一个模型,在模型中,均匀的能量输入会产生自关键细胞的自相似分布所引发的事件。我们将此模型称为自相似临界度(SSC)。通过允许岩浆迁移的空间分布是自相似的,SSC模型重新创建了观测到的ESC海山体积分布。 SSC模型可以为其他自然系统(例如森林火灾和滑坡)提供分形几何形状和观测到的幂律分布之间的联系。

著录项

  • 作者

    Burroughs, Stephen M.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Geophysics.; Geology.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 94 p.
  • 总页数 94
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;地质学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号