首页> 外文学位 >Brain-computer interface control with small motor cortex ensembles.
【24h】

Brain-computer interface control with small motor cortex ensembles.

机译:具有小型运动皮质集合体的脑机接口控制。

获取原文
获取原文并翻译 | 示例

摘要

With advances in neuroscience and technology, brain-computer interfaces (BCIs) offer the potential to restore lost function to individuals with spinal cord injury or neurological disorders. Over the last two decades, numerous studies have demonstrated the utility of BCIs driven by populations of simultaneously-recorded primary motor cortex (M1) neurons. The conventional approach to BCI control involves decoding the pre-existing outputs and/or interactions of M1 ensembles before mapping neuron firing rates to BCI parameters. Earlier studies, however, demonstrated that primates can directly control a single degree-of-freedom output with individual M1 firing rates without conventional neural decoding. If individual M1 neuron firing rates can be voluntarily modulated to control an external device, can arbitrary combinations of M1 neurons likewise be voluntarily co-modulated for BCI control? If so, how are M1 neurons collectively or selectively modulated when arbitrarily mapped to a BCI? To address these questions, two Rhesus monkeys were operantly conditioned to control a one-dimensional BCI by modulating the firing rates of unique ensembles of one to four arbitrarily-selected M1 neurons. In general, BCI performance improved significantly over the course of ~20-30 minute sessions. Although several factors contributed to variability in BCI performance across unique ensembles, BCI performance was generally better with larger ensembles. Encoding redundancy associated with larger ensembles enabled the monkeys to achieve precise BCI control while using a wide range of ensemble co-modulation patterns. In particular, neuron firing rate patterns during BCI target acquisition were preferentially distributed within the task-redundant dimensions of the ensemble's joint firing rate space. Moreover, BCI control neurons were modulated more strongly and precisely than other M1 neurons recorded during the BCI task, indicating preferential modulation of BCI control neurons within single experimental sessions. Arbitrarily-selected M1 neurons can therefore be selectively co-modulated for rapid acquisition of BCI control, demonstrating the inherent flexibility of motor cortex that may also underlie natural motor learning and skill acquisition.
机译:随着神经科学和技术的进步,脑机接口(BCI)提供了恢复患有脊髓损伤或神经系统疾病的人失去功能的潜力。在过去的二十年中,大量研究证明了同时记录的原代运动皮层(M1)神经元驱动的BCI的效用。 BCI控制的常规方法包括在将神经元激发速率映射到BCI参数之前,对M1集成的现有输出和/或交互进行解码。但是,较早的研究表明,灵长类动物可以直接控制单个M1发射速率的单个自由度输出,而无需常规的神经解码。如果可以自动调节各个M1神经元的放电频率以控制外部设备,那么是否可以对M1神经元的任意组合同样进行自愿共调制以控制BCI?如果是这样,当任意映射到BCI时,如何对M1神经元进行集体或选择性调制?为了解决这些问题,通过调节一到四个任意选择的M1神经元的独特合奏的发射速率,对两只恒河猴进行了条件化控制,以控制一维BCI。通常,在大约20-30分钟的会话过程中,BCI性能得到了显着改善。尽管有几个因素会导致整个独特合奏的BCI性能发生变化,但对于较大的合奏,BCI性能通常会更好。与更大的合奏相关的编码冗余使猴子能够在使用各种合奏共调模式的同时实现精确的BCI控制。特别是,在BCI目标获取过程中,神经元激发速率模式优先分布在集合的联合激发速率空间的任务冗余维度内。此外,与BCI任务期间记录的其他M1神经元相比,BCI控制神经元的调制强度和精确度更高,这表明在单个实验阶段内BCI控制神经元的优先调制。因此,可以将任意选择的M1神经元选择性地进行共调制,以快速获得BCI控制,从而证明运动皮层的固有灵活性也可能是自然运动学习和技能获得的基础。

著录项

  • 作者

    Law, Andrew J.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Biomedical engineering.;Neurosciences.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号