首页> 外文学位 >Adaptive Monte Carlo methods for solving eigenvalue problems.
【24h】

Adaptive Monte Carlo methods for solving eigenvalue problems.

机译:求解特征值问题的自适应蒙特卡洛方法。

获取原文
获取原文并翻译 | 示例

摘要

Simulation has become a very important computational method for solving many different kinds of problems in science and engineering. One of the objectives of a successful application is an efficient simulation scheme. Importance Sampling is such an efficient simulation method. Under certain conditions, it requires only one simulation outcome to exactly compute the expectation of random a quantity. This optimal importance sampling technique involves the use of an alternative sampling distribution, which results in a zero-variance estimator. The practical problem with this method is the lack of knowledge about the zero-variance measure. A newer class of simulation techniques has been proposed which mitigates this drawback by learning about the structure of the zero-variance measure at each iterate and utilizing this knowledge to make increasingly accurate guesses of the zero-variance measure for the next iterate. This learning feature justifies the name learning algorithm or adaptive algorithm.; In this work we establish a framework which provides certain sufficient conditions and results, under which an adaptive algorithm is guaranteed to converge exponentially fast to the optimal or the zero-variance solution. These results are based upon the properties of general state space and discrete time Markov chains and utilize Lyapunov function-like ideas in this context.; As an application of this result, we propose an adaptive Monte Carlo algorithm for computing the Perron-Frobenius eigenvalue and eigenvector for non-negative and irreducible matrices. Although the eigenvalue problem is simple to state, it is by no means easy to solve. Moreover, it has many applications and routinely arises in many different branches of the basic sciences, mathematics, and economics. We prove the exponential convergence of the proposed algorithm using the framework that we have established. We also provide numerical illustrations of this algorithm and compare the results with other numerical methods for solving the eigenvalue problem.
机译:模拟已经成为解决科学和工程中许多不同问题的一种非常重要的计算方法。成功应用程序的目标之一是有效的仿真方案。重要性采样是一种有效的模拟方法。在某些条件下,只需要一个模拟结果即可准确计算出随机数量的期望值。这种最佳重要性抽样技术涉及使用替代抽样分布,这导致了零方差估算器。这种方法的实际问题是缺乏关于零方差测度的知识。已经提出了一种新型的模拟技术,它通过在每次迭代时对零方差度量的结构进行学习并利用该知识来对零方差度量进行越来越准确的猜测,从而减轻了这一缺陷。下一次迭代。该学习功能证明名称学习算法自适应算法。在这项工作中,我们建立了一个框架,该框架提供了一定的条件和结果,在此框架下,可以确保自适应算法以指数方式快速收敛至最优或零方差解决方案。这些结果基于一般状态空间和离散时间马尔可夫链的性质,并在这种情况下利用了类似于Lyapunov函数的思想。作为此结果的应用,我们提出了一种自适应蒙特卡罗算法,用于计算非负和不可约矩阵的Perron-Frobenius特征值和特征向量。尽管特征值问题很容易陈述,但绝不容易解决。而且,它有许多应用,并且经常出现在基础科学,数学和经济学的许多不同分支中。我们使用已建立的框架证明了所提出算法的指数收敛性。我们还提供了该算法的数值说明,并将结果与​​其他用于解决特征值问题的数值方法进行了比较。

著录项

  • 作者

    Desai, Paritosh Y.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Operations Research.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 运筹学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号