首页> 外文学位 >Adaptive compensation of sensor runout and mass unbalance in magnetic bearings.
【24h】

Adaptive compensation of sensor runout and mass unbalance in magnetic bearings.

机译:电磁轴承中传感器跳动和质量不平衡的自适应补偿。

获取原文
获取原文并翻译 | 示例

摘要

Active magnetic bearings (ANBs) have increasingly become the choice for high-speed, high-performance rotating machinery because they provide the scope for contactless and frictionless operation. Since magnetic bearings are open-loop unstable, they require careful control system design. Although general feedback control techniques have been proposed for precise shaft levitation, the problem of sensor runout (SRO) has been largely overlooked due to its similarities with mass unbalance in creating periodic disturbances. Furthermore, the important problem of synchronous SRO and unbalance compensation has not been adequately investigated.; To improve the accuracy of magnetically levitated rotors, we propose for the first time an adaptive control framework that can compensate SRO and unbalance, both individually and simultaneously, while providing shaft stabilization about the geometric center. In our approach, bias currents in the magnetic coils are periodically perturbed to create persistency of excitation that guarantees individual identification of the harmonic components of the synchronous disturbances. Through feed-forward cancellation of the disturbances and careful control system design, the algorithm provides geometric center stabilization that is robust to uncertainty in plant parameter values. While Lyapunov stability theory and its derived passivity formalism provide a solid theoretical framework for the algorithm, corroborating experimental results establish the simplicity of the design and implementation procedure. The algorithm applies to both SISO and MIMO systems involving a rigid rotor and future studies are expected to broaden its applicability to flexible rotor models.
机译:有源电磁轴承(ANB)越来越成为高速,高性能旋转机械的选择,因为它们提供了无接触和无摩擦操作的范围。由于电磁轴承是开环不稳定的,因此需要仔细的控制系统设计。尽管已经提出了用于精确的轴悬浮的通用反馈控制技术,但是由于传感器失步(SRO)与质量不平衡在产生周期性干扰方面的相似性,因此该问题已被大大忽略。此外,同步SRO和不平衡补偿的重要问题尚未得到充分研究。为了提高磁悬浮转子的精度,我们首次提出了一种自适应控制框架,该框架可以单独和同时补偿SRO和不平衡,同时提供围绕几何中心的轴稳定性。在我们的方法中,电磁线圈中的偏置电流会被周期性地扰动,以产生励磁的持久性,从而确保对同步干扰的谐波分量进行单独识别。通过消除干扰的前馈和精心的控制系统设计,该算法可提供几何中心稳定度,对设备参数值的不确定性具有鲁棒性。 Lyapunov稳定性理论及其衍生的无源形式主义为该算法提供了坚实的理论框架,而确凿的实验结果证实了设计和实现过程的简便性。该算法适用于涉及刚性转子的SISO和MIMO系统,并且有望进行进一步的研究以扩大其在柔性转子模型中的适用性。

著录项

  • 作者

    Setiawan, Joga Dharma.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Engineering Mechanical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号