首页> 外文学位 >Suppression of rotary unbalance spin-up vibration using passive and semi-active vibration absorbers.
【24h】

Suppression of rotary unbalance spin-up vibration using passive and semi-active vibration absorbers.

机译:使用被动和半主动减振器抑制旋转不平衡旋转振动。

获取原文
获取原文并翻译 | 示例

摘要

Rotating machine unbalance can be the source of unwanted vibrations in many mechanical systems. One problematic form of unbalance force is generated by machine start-up or shut-down. Start-up/shut-down unbalance induces a harmonic excitation force with a varying frequency that is directly proportional to rotor speed, and an amplitude that is proportional to the square of the frequency. When the frequency of a start-up/shut-down unbalance approaches or passes a system resonant frequency, large amplitude vibrations can occur. These vibrations generate greater than normal system operating forces, which could accelerate cumulative part wear and damage internal components. Such degradation could significantly reduce a mechanical system's life.; This thesis presents a passive and a semi-active control method for the suppression of vibrations caused by unbalance spin-up excitation (focusing on the start-up scenario) in a mechanical structure. Both methods employ dynamic vibration absorbers (DVAs).; A passive control method using dual mechanical DVAs has been previously proposed (Bursal, 1995). As a basis for design, Bursal (1995) made a conjecture that shaping the system's frequency response function (FRF) by using DVAs to provide a low, flattened, FRF curve over the excitation spin-up frequency range, would minimize the structural vibration response for an unbalance spin-up event. Although the method has been shown to be effective for a few sets of conditions, the conjecture of using steady-state-based FRF-Shaping to suppress transient responses (spin-up unbalance generates a transient response) has not been substantiated.; This thesis validates the dual absorber design conjecture and provides additional information regarding the optimal design of such a system. The parametric studies compare the performances between an optimal design (minimum peak response) and the FRF-Shaping design. It is shown that the performances of the two designs are similar for very slow spin-up rates. As the spin-up rate increases, differences grow progressively larger. At very high spin-up rates, the maximum vibration amplitude of the optimal system could be approximately three-quarters of that of the FRF-Shaping design.; Piezoelectric absorbers with inductive-resistive shunts are evaluated to determine their viability for dual passive absorber applications. Experimental investigations are conducted to validate general findings from the model-based simulation study of dual absorbers. The physical structures of the mechanical and piezoelectric absorber systems are found to be fundamentally different. However, despite more complex basic parameter definitions and a less straightforward design process, the piezoelectric absorbers are found to provide vibration suppression comparable to that of the mechanical absorbers.; Finally, semi-active, variable stiffness control of a single DVA is examined. An existing open-loop control scheme (Walsh and Lamancusa, 1992) prescribes a multiple-stepped, optimal absorber stiffness profile. The optimal stiffness profile is determined using model-based simulation and a multivariable feasible direction search. The complexity of the scheme and the associated computation cost prompted a search for a simpler control method. From insights gained in the parametric study of the dual passive absorbers in this thesis, a new, single variable stiffness control law is developed. This law, which requires the definition of only a single variable and a simple numerical line search to determine the optimal parameter, is found to be highly effective across a broad range of spin-up rates. The reduced computational effort and simplification of implementation make the new scheme an attractive alternative for suppressing spin-up vibration with semi-active DVA control.
机译:旋转机械的不平衡可能是许多机械系统中不希望有的振动的根源。机器启动或关闭会产生一种不平衡力的问题形式。启动/关闭不平衡会产生谐波激励力,该谐波激励力的变化频率与转子速度成正比,而振幅与频率的平方成正比。当启动/关闭不平衡的频率接近或超过系统共振频率时,可能会发生大幅度的振动。这些振动会产生比正常系统更大的作用力,这可能会加速零件的累积磨损并损坏内部组件。这种降级会大大缩短机械系统的寿命。本文提出了一种被动和半主动控制方法,用于抑制机械结构中由于不平衡旋转激励(聚焦于启动情况)而引起的振动。两种方法都使用动态减震器(DVA)。先前已经提出了使用双重机械DVA的被动控制方法(Bursal,1995)。作为设计的基础,Bursal(1995)做出了一个推测,即通过使用DVA对系统的频率响应函数(FRF)进行整形,以在激励旋转频率范围内提供低而平坦的FRF曲线,将使结构振动响应最小化。发生不平衡旋转事件。尽管已经证明该方法在几种情况下是有效的,但尚未证实使用基于稳态的FRF整形来抑制瞬态响应(旋转不平衡会产生瞬态响应)的猜测。本文验证了双重吸收器设计的猜想,并提供了有关这种系统的最佳设计的其他信息。参数研究比较了最佳设计(最小峰值响应)和FRF-Shaping设计之间的性能。结果表明,两种设计的性能在极慢的旋转速率下都相似。随着旋转率的增加,差异逐渐增大。在非常高的旋转速度下,最佳系统的最大振动幅度可能约为FRF-Shaping设计的四分之三。对具有电感阻性分流器的压电吸收器进行评估,以确定其在双无源吸收器应用中的可行性。进行实验研究以验证基于双吸收器的基于模型的模拟研究的一般发现。发现机械和压电吸收器系统的物理结构根本不同。然而,尽管更复杂的基本参数定义和较不直接的设计过程,但发现压电吸收器可提供与机械吸收器相当的减振效果。最后,检查了单个DVA的半主动可变刚度控制。现有的开环控制方案(Walsh和Lamancusa,1992)规定了一个多步的,最佳的吸收器刚度曲线。使用基于模型的仿真和多变量可行方向搜索来确定最佳刚度曲线。该方案的复杂性和相关的计算成本促使人们寻求一种更简单的控制方法。从本文对双无源减振器的参数研究中获得的见解,开发了一种新的单变刚度控制律。发现仅需定义单个变量并通过简单的数字线搜索即可确定最佳参数的该法则在广泛的提速范围内都非常有效。减少的计算工作量和简化的实现方式使该新方案成为采用半主动DVA控制来抑制旋转振动的有吸引力的替代方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号