首页> 外文学位 >Modeling of discharges in flowing plasmas.
【24h】

Modeling of discharges in flowing plasmas.

机译:流动等离子体中的放电建模。

获取原文
获取原文并翻译 | 示例

摘要

Plasmas with electron densities significantly elevated with respect to their chemical equilibrium values are of use in a wide range of applications. However the practicality of these uses critically depends on the ability to generate these super-ionized plasmas at low temperatures with the minimum possible power input. Electron heating by means of electric discharges has been shown to be an efficient method to produce these super-ionized plasmas. In order to devise power reduction strategies it is important to understand the chemical mechanisms of ionization and recombination in air plasmas with energetic electrons. It is also vital to have an understanding of the discharge physics. This is possible only by detailed numerical simulation of these current carrying plasmas.; In this dissertation, a new computational tool has been developed to simulate DC and pulsed discharges in flowing atmospheric plasmas. The state of the plasma is represented with eleven chemical species, a mass-averaged vibration-electronic temperature, an electron translational temperature and a mass-averaged translational temperature for the heavy particles. This model incorporates a self-consistent multicomponent, multitemperature diffusion model and a two-temperature chemical kinetics model to represent the nonequilibrium thermochemistry of the plasma. The equations for the gas model are then solved numerically using a new semi-implicit finite volume time marching technique. This method significantly reduces the cost of solution compared to an explicit method.; The numerical method has been tested against nonequilibrium plasma experiments conducted at Stanford University. The calculated temperatures were compared to the experimentally predicted values. The computations were in excellent agreement with the experiments. The results showed that it is necessary to include multicomponent diffusion to simulate these flows. The numerical method was then tested against DC and pulsed discharge experiments. The calculated temperatures and the peak electron number density for the DC discharge were compared to the measurements. The computed temporal decay of electron number density for a combined DC/pulsed discharge was compared to the experimentally measured decay. Again, the simulations are in good agreement with the experiments. These results show that the current numerical simulation model is capable of treating DC and pulsed discharges in flowing plasmas.
机译:具有相对于其化学平衡值而言显着提高的电子密度的等离子体可用于广泛的应用中。然而,这些用途的实用性关键取决于在低温下以最小可能的功率输入产生这些超电离等离子体的能力。已经证明通过放电进行电子加热是产生这些超离子化等离子体的有效方法。为了设计降低功率的策略,重要的是要了解空气等离子体中具有高能电子的电离和重组的化学机理。了解放电物理也很重要。只有通过对这些载流等离子体进行详细的数值模拟才有可能。本文开发了一种新的计算工具,用于模拟大气等离子体中的直流和脉冲放电。等离子体的状态用11种化学物质,重均振动电子温度,电子平移温度和重均质量平均温度表示。该模型结合了自洽多组分,多温度扩散模型和两温化学动力学模型,以代表等离子体的非平衡热化学。然后使用一种新的半隐式有限体积时间行进技术对气体模型方程进行数值求解。与显式方法相比,该方法显着降低了解决方案的成本。数值方法已针对斯坦福大学进行的非平衡等离子体实验进行了测试。将计算出的温度与实验预测值进行比较。计算结果与实验非常吻合。结果表明,必须包括多组分扩散来模拟这些流动。然后针对直流和脉冲放电实验测试了数值方法。将计算出的温度和直流放电的峰值电子数密度与测量值进行比较。将组合的直流/脉冲放电的计算的电子数密度的时间衰减与实验测量的衰减进行比较。同样,模拟与实验非常吻合。这些结果表明,当前的数值模拟模型能够处理流动等离子体中的直流和脉冲放电。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号