首页> 外文学位 >Nanostructured Metal Oxide Coatings for Electrochemical Energy Conversion and Storage Electrodes.
【24h】

Nanostructured Metal Oxide Coatings for Electrochemical Energy Conversion and Storage Electrodes.

机译:用于电化学能量转换和存储电极的纳米结构金属氧化物涂层。

获取原文
获取原文并翻译 | 示例

摘要

The realization of an energy future based on safe, clean, sustainable, and economically viable technologies is one of the grand challenges facing modern society. Electrochemical energy technologies underpin the potential success of this effort to divert energy sources away from fossil fuels, whether one considers alternative energy conversion strategies through photoelectrochemical (PEC) production of chemical fuels or fuel cells run with sustainable hydrogen, or energy storage strategies, such as in batteries and supercapacitors. This dissertation builds on recent advances in nanomaterials design, synthesis, and characterization to develop novel electrodes that can electrochemically convert and store energy.;Chapter 2 of this dissertation focuses on refining the properties of TiO2-based PEC water-splitting photoanodes used for the direct electrochemical conversion of solar energy into hydrogen fuel. The approach utilized atomic layer deposition (ALD); a growth process uniquely suited for the conformal and uniform deposition of thin films with angstrom-level thickness precision. ALD's thickness control enabled a better understanding of how the effects of nitrogen doping via NH3 annealing treatments, used to reduce TiO2's bandgap, can have a strong dependence on TiO2's thickness and crystalline quality. In addition, it was found that some of the negative effects on the PEC performance typically associated with N-doped TiO2 could be mitigated if the NH 3-annealing was directly preceded by an air-annealing step, especially for ultrathin (i.e., < 10 nm) TiO2 films. ALD was also used to conformally coat an ultraporous conductive fluorine-doped tin oxide nanoparticle (nanoFTO) scaffold with an ultrathin layer of TiO2. The integration of these ultrathin films and the oxide nanoparticles resulted in a heteronanostructure design with excellent PEC water oxidation photocurrents (0.7 mA/cm2 at 0 V vs. Ag/AgCl) and charge transfer efficiency.;In Chapter 3, two innovative nanoarchitectures were engineered in order to enhance the pseudocapacitive energy storage of next generation supercapacitor electrodes. The morphology and quantity of MnO2 electrodeposits was controlled by adjusting the density of graphene foliates on a novel graphenated carbon nanotube (g-CNT) scaffold. This control enabled the nanocomposite supercapacitor electrode to reach a capacitance of 640 F/g, under MnO2 specific mass loading conditions (2.3 mg/cm2) that are higher than previously reported. In the second engineered nanoarchitecture, the electrochemical energy storage properties of a transparent electrode based on a network of solution-processed Cu/Ni cores/shell nanowires (NWs) were activated by electrochemically converting the Ni metal shell into Ni(OH)2. Furthermore, an adjustment of the molar percentage of Ni plated onto the Cu NWs was found to result in a tradeoff between capacitance, transmittance, and stability of the resulting nickel hydroxide-based electrode. The nominal area capacitance and power performance results obtained for this Cu/Ni(OH)2 transparent electrode demonstrates that it has significant potential as a hybrid supercapacitor electrode for integration into cutting edge flexible and transparent electronic devices.
机译:基于安全,清洁,可持续和经济上可行的技术实现能源未来是现代社会面临的重大挑战之一。无论人们是考虑通过光化学(PEC)生产化学燃料还是使用可持续氢气运行的燃料电池的替代能源转换策略,还是采用诸如在电池和超级电容器中。本论文建立在纳米材料设计,合成和表征的最新进展的基础上,开发出可以电化学转化和存储能量的新型电极。本论文的第二章着眼于改进用于直接法的TiO2基PEC水分解光阳极的性能。将太阳能电化学转化为氢燃料。该方法利用了原子层沉积(ALD);一种生长过程,独特地适合于以埃级厚度精度对薄膜进行共形和均匀沉积。 ALD的厚度控制可以更好地了解用于减少TiO2带隙的NH3退火处理对氮掺杂的影响如何强烈依赖于TiO2的厚度和晶体质量。此外,还发现,如果将NH 3退火直接在空气退火步骤之后进行,特别是对于超薄(例如,<10),则可以减轻通常与N掺杂的TiO2相关的对PEC性能的某些负面影响。 nm)TiO2膜。 ALD还用于用超薄的TiO2层保形地涂覆超孔导电的掺氟氧化锡纳米颗粒(nanoFTO)支架。这些超薄薄膜和氧化物纳米粒子的集成导致异质结构设计,具有出色的PEC水氧化光电流(0 V时相对于Ag / AgCl的0.7 mA / cm2)和电荷转移效率。;在第3章中,设计了两种创新的纳米体系结构。为了增强下一代超级电容器电极的伪电容能量存储。通过调节新型石墨化碳纳米管(g-CNT)支架上石墨烯叶酸酯的密度,可以控制MnO2电沉积的形貌和数量。这种控制使纳米复合材料超级电容器电极在MnO2的特定质量负载条件(2.3 mg / cm2)高于以前报道的条件下,可以达到640 F / g的电容。在第二种工程化纳米结构中,通过将Ni金属壳电化学转化为Ni(OH)2,激活了基于溶液加工的Cu / Ni核/壳纳米线(NWs)网络的透明电极的电化学储能特性。此外,发现调整镀在Cu NWs上的Ni的摩尔百分比导致在所得的氢氧化镍基电极的电容,透射率和稳定性之间的折衷。此Cu / Ni(OH)2透明电极的标称面积电容和功率性能结果表明,它具有很大的潜力,可作为集成到尖端柔性和透明电子设备中的混合超级电容器电极。

著录项

  • 作者

    Cordova, Isvar Abraxas.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Nanotechnology.;Alternative Energy.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号