首页> 外文学位 >Hybrid surface-/bulk-micromachining processes for scanning micro-optical components.
【24h】

Hybrid surface-/bulk-micromachining processes for scanning micro-optical components.

机译:用于扫描微光学组件的混合表面/本体微加工工艺。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation discusses the design and fabrication of micro-optical scanners that have high-quality optical-surface properties and are capable of previously unattainable high scanning rates.; A first project investigates methods of creating scanning rectangular diffraction gratings using well-established fabrication methods of silicon surface-micromachining in a foundry process. We then introduce new methods to form an actuated blazed grating, a diffraction grating having a triangular surface profile that provides improved diffraction efficiency and wavelength resolution when compared to the rectangular grating. The measured diffraction efficiency of 60% in the blazed grating is four times that of the rectangular grating at an incident wavelength of 632.8 nm. Wavelength resolution for the high-order blazed grating is not limited by the linewidth of the fabrication process in contrast to the case of first-order rectangular gratings. Thus, the wavelength resolution of the blazed grating holds a fivefold increase from that of a comparably sized rectangular grating made in a minimum 2 μm-linewidth process.; In the second case (that of the large-angle low-frequency scanner), the micromirror should have relatively large-force actuators and soft torsional hinges. The softer hinges provide lower restoring forces, thus allowing larger-angle scanning for a fixed amount of actuator force. As dynamic-surface deformations and overall mass are lesser issues for this scanner, its design is easier with only static-surface deformations to consider. A low tensile stress (under 100 MPa tensile) polysilicon-mirror surface supported by a very wide (and thus very stiff) single-crystal silicon support rib is sufficient to ensure minimal static-surface deformations.; The research described here targets designs and fabrication technologies that can create optical MEMS scanners with high-quality optical surfaces that do not deform nor degrade during operation. We have pushed the limits by creating optical scanners to scan at previously unattainable speeds (as high as 81 kHz). In this work, we have developed a fabrication process that produces robust scanners and brought the technology to a level suitable for transfer to industry. (Abstract shortened by UMI.)
机译:本文讨论了具有高质量光学表面特性并且能够实现以前无法获得的高扫描速率的微光学扫描仪的设计和制造。第一个项目研究使用铸造工艺中成熟的硅表面微加工制造方法来创建扫描矩形衍射光栅的方法。然后,我们介绍新的方法来形成激励的闪耀光栅,该光栅是具有三角形表面轮廓的衍射光栅,与矩形光栅相比,该三角形光栅提供了更高的衍射效率和波长分辨率。在入射光波长为632.8 nm时,在闪耀光栅中测得的衍射效率为60%,是矩形光栅的四倍。与一阶矩形光栅的情况相比,高阶闪耀光栅的波长分辨率不受制程的线宽限制。因此,闪耀光栅的波长分辨率比以最小2μm线宽工艺制成的尺寸相当的矩形光栅的波长分辨率高五倍。在第二种情况下(大角度低频扫描仪),微镜应具有相对较大作用力的致动器和软扭转铰链。较软的铰链提供较低的恢复力,因此可以进行较大角度的扫描以获取固定量的致动器力。由于此扫描仪的动态表面变形和整体质量较小,因此仅考虑静态表面变形即可简化其设计。由非常宽的(因而非常坚硬的)单晶硅支撑肋支撑的低拉伸应力(低于100 MPa拉伸)多晶硅镜面足以确保最小的静态表面变形。此处描述的研究针对设计和制造技术,这些技术可以创建具有高质量光学表面的光学MEMS扫描仪,该光学表面在操作过程中不会变形或降解。通过创建光学扫描仪以以前无法达到的速度(高达81 kHz)进行扫描,我们已经突破了极限。在这项工作中,我们开发了一种制造工艺,该工艺可以生产出坚固的扫描仪,并将该技术提高到适合工业应用的水平。 (摘要由UMI缩短。)

著录项

  • 作者

    Nee, Jocelyn Tsekang.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号