首页> 外文学位 >Gas-deposit-alloy corrosion interactions in simulated combustion environments.
【24h】

Gas-deposit-alloy corrosion interactions in simulated combustion environments.

机译:模拟燃烧环境中的气体沉积合金腐蚀相互作用。

获取原文
获取原文并翻译 | 示例

摘要

High temperature corrosion in aggressive coal combustion environments involves simultaneous corrosion reactions between combustion gases, ash deposits, and alloys. This research investigated the behavior of a ferritic steel (SA387-Gr11) and three weld claddings (309L SS, Alloy 72, and Alloy 622) in five combustion environments beneath solid deposits at 500°C for up to 1000 hours. The synthetic gases consisted of N2-CO-CO-H2-H2O-H 2S-SO2 mixtures that simulated a range of fuel-rich or fuel-lean combustion environments with a constant sulfur content. The synthetic deposits contained FeS2, FeS, Fe3O4 and/or carbon. Reaction kinetics was studied in individual gas-metal, gas deposit, and deposit-alloy systems. A test method was developed to investigate simultaneous gas-deposit-metal corrosion reactions. The results showed reaction kinetics varied widely, depending on the gas-alloy system and followed linear, parabolic, and logarithmic rate laws. Under reducing conditions, the alloys exhibited a range of corrosion mechanisms including carburization-sulfidation, sulfidation, and sulfidation-oxidation. Most alloys were not resistant to the highly reducing gases but offered moderate resistance to mixed oxidation-sulfidation by demonstrating parabolic or logarithmic behavior. Under oxidizing conditions, all of the alloys were resistant. Under oxidizing-sulfating conditions, alloys with high Fe or Cr contents sulfated whereas an alloy containing Mo and W was resistant. In the gas-deposit-metal tests, FeS2-bearing deposits were extremely corrosive to low alloy steel under both reducing and oxidizing conditions but they had little influence on the weld claddings. Accelerated corrosion was attributed to rapid decomposition or oxidation of FeS2 particles that generated sulfur-rich gases above the alloy surface. In contrast, FeS-type deposits had no influence under reducing conditions but they were aggressive to low alloy steel under oxidizing conditions. The extent of damage correlated with the initial sulfur content in the deposit. Fe3O4 in the deposit was beneficial because it acted as a sulfur getter or oxygen source. Carbon had a mixed effect. The reaction behavior was modeled using computational thermochemistry based on Gibbs free energy minimization. A calculation method was introduced to predict equilibrium corrosion microstructures and trace reaction paths in complex gas-deposit-metal environments. Kinetic factors were identified where equilibrium reaction products were not experimentally observed.
机译:腐蚀性煤燃烧环境中的高温腐蚀涉及燃烧气体,灰烬沉积物和合金之间的同时腐蚀反应。这项研究调查了铁素体钢(SA387-Gr11)和三个焊接熔敷层(309L SS,72号合金和622号合金)在五种燃烧环境下在500°C的固态沉积下长达1000小时的行为。合成气由N 2 -CO-CO-H 2 -H 2 OH 2 S-SO组成 2 混合物模拟了具有恒定硫含量的一系列富燃料或贫燃料燃烧环境。合成沉积物包含FeS 2 ,FeS,Fe 3 O 4 和/或碳。在单独的气体金属,气体沉积和沉积合金系统中研究了反应动力学。开发了一种测试方法来研究同时发生的气体沉积金属腐蚀反应。结果表明,反应动力学变化很大,取决于气体合金系统,并遵循线性,抛物线和对数速率定律。在还原条件下,合金表现出一系列的腐蚀机理,包括渗碳-硫化,硫化和硫化-氧化。大多数合金对高还原性气体没有抵抗力,但通过证明抛物线或对数行为,对混合氧化-硫化具有中等抵抗力。在氧化条件下,所有合金均具有抗性。在氧化-硫酸化条件下,高Fe或Cr含量的合金被硫酸化,而含有Mo和W的合金具有抗性。在气体沉积金属试验中,在还原和氧化条件下,含FeS 2 的沉积物对低合金钢都具有极强的腐蚀性,但对熔覆层的影响很小。加速腐蚀归因于FeS 2 颗粒的快速分解或氧化,在合金表面上方生成富硫气体。相反,FeS型沉积物在还原条件下没有影响,但在氧化条件下对低合金钢具有侵蚀性。破坏程度与沉积物中的初始硫含量相关。矿床中的Fe 3 O 4 是有益的,因为它可以用作硫的吸收剂或氧气源。碳有混合作用。使用基于吉布斯自由能最小化的计算热化学对反应行为进行建模。引入了一种计算方法来预测复杂的气体沉积金属环境中的平衡腐蚀微观结构和痕量反应路径。在没有实验观察到平衡反应产物的地方,确定了动力学因素。

著录项

  • 作者

    Luer, Kevin Raymond.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Materials Science.; Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 313 p.
  • 总页数 313
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;冶金工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号