首页> 外文学位 >Development of strategies to overcome limitations to functional recovery after peripheral nerve injuries.
【24h】

Development of strategies to overcome limitations to functional recovery after peripheral nerve injuries.

机译:制定策略以克服周围神经损伤后功能恢复的局限性。

获取原文
获取原文并翻译 | 示例

摘要

Nerve regeneration after peripheral nerve injuries is relatively better than after injuries to the central nervous system. The difference in the regenerative capacity is attributed to the provision of a growth-supportive environment by the Schwann cells of the of the peripheral nervous system. However, functional recovery after peripheral nerve injuries is often very poor despite the regenerative capacity. Factors limiting functional recovery are unknown, and tremendous advancements in the microsurgical repair of injured nerves have not made significant improvement in functional outcome after nerve injuries. Hence, using rat models of nerve injury and repair, the objectives of this thesis were, (1) to study some of the cell-molecular mechanisms of poor functional recovery after peripheral nerve injuries, and (2) to develop experimental strategies to promote functional recovery. We studied the progressive changes in the capacity of injured motoneurons to regenerate axons under conditions that mimic the pathophysiology of nerve injuries in humans (i.e. after immediate and delayed nerve repairs), and how these changes relate to the functional state of the Schwann cells of the distal nerve stumps. The effects of transforming growth factor-beta (TGF-beta) on the capacity of chronically denervated Schwann cells to support motor axonal regeneration and that of the immunophilin, FK506, to promote motor axonal regeneration after delayed nerve repair, were explored as possible strategies to promote functional recovery after nerve injuries. Adult male Sprague-Dawley rats were used in all experiments under aseptic conditions. The common peroneal (CP) and tibial (TIB) branches of rat sciatic nerve were used in a cross-suture paradigm of nerve injury and repair. Briefly, the CP and TIB nerves were cut and either immediate or delayed TIB-CP cross-suture was performed to allow regeneration of TIB motoneurons into freshly or chronically denervated CP nerve stumps. Direct neuroanatomical estimation of the numbers of TIB motoneurons that regenerated axons was carried out using fluorescent neurotracers (Fluorogold or Fluororuby) to backlabel TIB neuronal cell bodies. Also, numbers of regenerated axons were counted and their myelination by the SCs was examined histomorphologically. Reverse-transcriptase polymerase chain reaction was used to determine changes in gene expression of SCs.; The major findings of this thesis include (i) delayed nerve repair (>4weeks) leads to progressive deterioration of the capacity of the Schwann cells of the distal nerve stumps to support motor axonal regeneration; (ii) this declining capacity of Schwann cells to support motor axonal regeneration is due, at least in part, to the progressive downregulation of the expression of glial-derived neurotrophic factor; (iii) 48 hour in vitro incubation of chronically denervated Schwann cells with TGF-beta dramatically improved their capacity to support motor axonal regeneration in vivo; and (iv) FK506 increased the rate of axonal regeneration and the number of motoneurons that regenerated axons, even after delayed nerve repair. In conclusion, the results of this thesis demonstrate that poor functional recovery after nerve injuries is primarily due to the detrimental effect of delayed reinnervation of the Schwann cells of the distal stumps of injured nerves, since they lose their capacity to support motor axonal regeneration. However, these detrimental effects of delayed nerve repair are reversible by cytokines such as TGF-beta, and preventable by FK506 which accelerates motor axonal regeneration and thereby, promotes timely reinnervation of Schwann cells.
机译:周围神经损伤后的神经再生比中枢神经系统损伤后的神经再生好。再生能力的差异归因于周围神经系统的雪旺氏细胞提供生长支持环境。然而,尽管具有再生能力,但周围神经损伤后的功能恢复通常非常差。限制功能恢复的因素尚不清楚,神经损伤的显微外科修复技术的巨大进步尚未使神经损伤后的功能预后得到显着改善。因此,使用大鼠神经损伤和修复模型,本论文的目的是:(1)研究周围神经损伤后功能恢复不良的一些细胞分子机制,以及(2)制定促进神经损伤和修复功能的实验策略。复苏。我们研究了在模拟人类神经损伤病理生理的条件下(即,立即和延迟的神经修复后)受伤的运动神经元再生轴突能力的进行性变化,以及这些变化如何与雪旺氏细胞的功能状态相关远端神经残端。探讨了转化生长因子-β(TGF-β)对慢性失神经的雪旺氏细胞支持运动轴突再生的能力以及免疫亲和素FK506在延迟神经修复后促进运动轴突再生的能力的影响,作为可能的策略促进神经损伤后的功能恢复。在无菌条件下的所有实验中均使用成年雄性Sprague-Dawley大鼠。大鼠坐骨神经的腓总(CP)和胫骨(TIB)分支用于神经损伤和修复的交叉缝合范式。简而言之,切断CP和TIB神经,并立即或延迟进行TIB-CP交叉缝合,以使TIB运动神经元再生为新鲜或慢性失神经的CP神经残端。使用荧光神经示踪剂(Fluorogold或Fluororuby)对TIB神经元细胞体进行反标签,从而对再生轴突的TIB运动神经元的数量进行直接的神经解剖学估计。另外,计数再生轴突的数目,并通过组织形态学检查SCs的髓鞘形成。逆转录酶聚合酶链反应用于确定SCs基因表达的变化。本论文的主要发现包括:(i)延迟的神经修复(> 4周)导致远端神经残端雪旺氏细胞支持运动轴突再生的能力逐渐下降; (ii)雪旺氏细胞支持运动轴突再生的能力下降至少部分是由于神经胶质来源的神经营养因子的表达逐渐下调; (iii)将慢性失神经的施万细胞与TGF-β体外培养48小时,大大提高了它们在体内支持运动轴突再生的能力; (iv)FK506提高了轴突再生的速度和再生轴突的运动神经元的数量,即使在延迟神经修复后也是如此。总之,本论文的结果表明,神经损伤后功能恢复较差的主要原因是受伤神经末梢残端的雪旺氏细胞延迟再神经化的有害作用,因为它们失去了支持运动轴突再生的能力。但是,这些延迟神经修复的有害作用可以通过细胞因子(例如TGF-beta)来逆转,而可以通过FK506来阻止,FK506可以加速运动轴突再生,从而促进雪旺细胞的及时神经支配。

著录项

  • 作者单位

    University of Alberta (Canada).;

  • 授予单位 University of Alberta (Canada).;
  • 学科 Biology Neuroscience.; Health Sciences Rehabilitation and Therapy.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 304 p.
  • 总页数 304
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 神经科学;康复医学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号