首页> 外文学位 >Adaptive space-time signal processing for wireless communication and sensor systems.
【24h】

Adaptive space-time signal processing for wireless communication and sensor systems.

机译:用于无线通信和传感器系统的自适应时空信号处理。

获取原文
获取原文并翻译 | 示例

摘要

It is estimated that the number of internet users and the number of cellular phone users worldwide will soon reach more than one billion. Now, wireless communication is witnessing a rapid growth in technology, markets, and range of services. The trends include requiring wireless communication systems to link with the wireline infrastructure for internet accessing, to improve the robustness in time-variant multipath environment for mobile communication, to reduce the system complexity for economic and power constraints, and to enhance the spectrum efficiency of high-rate transmission over limited bandwidth.; An attractive approach for providing low-complexity and reliable transmission over frequency-selective fading multipath environment is the use of orthogonal frequency division multiplexing (OFDM) modulation. Another unrelated promising approach for improving bandwidth efficiency, transmission speed, and reliability is the use of antenna arrays. The first goal of this thesis is to explore methodologies for integrating these two approaches. Consequently, we propose advanced space-time signal processing algorithms to combine OFDM modulation and multiple-antenna systems. The research begins with investigating appropriate channel and signal models to characterize the time-variant multipath nature of wireless propagation. We then apply various signal processing algorithms to improve the system performance in terms of bit error rate (BER) and transmission rate. Analytical evaluations and simulations have been performed to investigate the system performance. To save computational work and reduce operational time, various approaches are proposed based on QR decomposition and parallel processing architectures. To show the performance of the OFDM multiple antenna system in the real world, a practical example applying OFDM multiple-antenna system to avionics telemetry is given.; To further enhance the channel capacity and bandwidth efficiency of OFDM multiple-antenna systems, optimal power and bit allocation methods subject to power and quality of service constraints are derived. The optimal solution is the 2-D water-filling form embedded in the space and frequency domains. To attain the performance in the time-varying environment, various channel estimators for channel tracking and optimal training sequences for channel acquisition are also designed. We evaluate the system performance in terms of BER, channel estimation error, and outage capacity under different angle spread, number of antennas, and Doppler spread conditions.; Space time signal processing can be applied not only to wireless communications but also to acoustics and seismic problems. Therefore, the second part of this dissertation applies space time signal processing algorithms with acoustic or seismic sensor-array to perform sources localization, tracking, separation, extraction, enhancement, classification and recognition. The methods that have been applied include 2-D wideband Multiple Signal Classification (MUSIC) algorithm, Least Square (LS), Total Least Square (TLS), Bounded Data Uncertainty (BDU) source localizers, forward-backward and dynamic programming time-delay trackers, maximum power (MP) collection beamforming, blind MP beamforming, Hidden Markov Model (H.M.M.) speech recognizer and nonlinear-dynamics signal classification methods. The applications include speaker localization and speech recognition in multimedia conference room, user localization for cellular systems, vehicle tracking and classification in the field for security surveillance, hands-free communication, hearing aids, music recording, seismic and underwater propagations, etc. The performance of the signal processing algorithms and sensor-array systems are evaluated through both computer simulations and field testing.
机译:据估计,全世界的因特网用户和蜂窝电话用户的数量很快将超过十亿。现在,无线通信技术,市场和服务范围正在迅速增长。趋势包括要求无线通信系统与有线基础结构链接以进行Internet访问,提高时变多径环境中移动通信的鲁棒性,降低经济和功率限制的系统复杂性以及提高高频谱的频谱效率。 -在有限的带宽上进行速率传输;用于在频率选择衰落多径环境上提供低复杂度和可靠传输的一种有吸引力的方法是使用正交频分复用(OFDM)调制。改善带宽效率,传输速度和可靠性的另一种不相关的有前途的方法是使用天线阵列。本文的首要目标是探索整合这两种方法的方法。因此,我们提出了先进的时空信号处理算法,将OFDM调制和多天线系统相结合。该研究从研究合适的信道和信号模型开始,以表征无线传播的时变多径性质。然后,我们应用各种信号处理算法,以提高误码率(BER)和传输速率方面的系统性能。进行了分析评估和模拟以调查系统性能。为了节省计算工作量并减少运算时间,提出了多种基于QR分解和并行处理架构的方法。为了说明OFDM多天线系统在现实世界中的性能,给出了将OFDM多天线系统应用于航空电子遥测的实例。为了进一步提高OFDM多天线系统的信道容量和带宽效率,推导了受功率和服务质量约束的最佳功率和比特分配方法。最佳解决方案是在空间和频域中嵌入二维注水形式。为了在时变环境中获得性能,还设计了各种用于信道跟踪的信道估计器和用于信道捕获的最佳训练序列。我们根据误码率,信道估计误差和不同角度扩展,天线数量和多普勒扩展条件下的中断容量来评估系统性能。时空信号处理不仅可以应用于无线通信,还可以应用于声学和地震问题。因此,本文的第二部分将时空信号处理算法与声学或地震传感器阵列相结合,对震源进行定位,跟踪,分离,提取,增强,分类和识别。已应用的方法包括二维宽带多信号分类(MUSIC)算法,最小二乘(LS),总最小二乘(TLS),有界数据不确定度(BDU)源定位器,前向和后向动态编程时延跟踪器,最大功率(MP)收集波束成形,盲MP波束成形,隐马尔可夫模型(HMM)语音识别器和非线性动力学信号分类方法。这些应用包括多媒体会议室中的扬声器定位和语音识别,蜂窝系统的用户定位,安全监控领域的车辆跟踪和分类,免提通信,助听器,音乐录制,地震和水下传播等。通过计算机仿真和现场测试对信号处理算法和传感器阵列系统的性能进行评估。

著录项

  • 作者

    Tung, Tai-Lai.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 216 p.
  • 总页数 216
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号