首页> 外文学位 >Mineral-microbe interactions probed in force, energy, and distance nanospace.
【24h】

Mineral-microbe interactions probed in force, energy, and distance nanospace.

机译:在力,能量和距离纳米空间中探究了矿物-微生物相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Biological force microscopy (BFM) was developed to quantitatively measure pico- to nano-Newton forces (10-9 to 10-12 N) as a function of the nanoscale distance (nanometers) between living bacteria and mineral surfaces, in aqueous solution. Native cells were linked to a force-sensing probe, which was used in a force microscope to measure attractive and repulsive forces as a mineral surface approached, made contact with, and subsequently withdrew from a bacterium on the probe. The resulting data were used to interpret the interactive dynamics operative between bacteria and mineral surfaces under environmentally relevant conditions.; BFM was used to study bacterial adhesion to mineral surfaces. In the case of Escherichia coli interactions with goethite, graphite, and muscovite, attractive and repulsive forces were detected at ranges up to 400 nanometers, the magnitude and sign depending on the ionic strength of the intervening solution and the mineral surface charge and hydrophobicity. Adhesion forces, up to several nanoNewtons in magnitude and exhibiting various fibrillation dynamics, were also measured and reflect the complex interactions of structural and chemical functionalities on the bacteria and mineral surfaces. In the study of Burkholderia cepecia interactions with mica, it was found that the physiological condition of the cell affected the observed adhesion forces. Cells grown under oligotrophic conditions exhibited an increased affinity for the mineral surface as opposed to cells grown under eutropic conditions.; BFM was also used to characterize the transfer of electrons from biomolecules on Shewanella oneidensis to Fe(III) in the structure of goethite. Force measurements with picoNewton resolution were made in aqueous solution under aerobic and anaerobic conditions. Energy values (in attoJoules) derived from these measurements show that the affinity between S. oneidensis and goethite rapidly increases by two to five times under anaerobic conditions where electron transfer from bacterium to mineral is expected. Specific signatures in the force curves, analyzed with the worm-like chain model of protein unfolding, suggest that the bacterium recognizes the mineral surface such that a 150 kDa putative, iron reductase is quickly mobilized within the outer membrane of S. oneidensis and specifically interacts with the goethite surface to facilitate the electron transfer process.
机译:开发了生物力显微镜(BFM),以定量测量水溶液中活细菌与矿物质表面之间纳米级距离(纳米)的函数,以皮克级至纳米牛顿力(10-9至10-12 N)为函数。将天然细胞连接至力感测探针,该力感测探针在力显微镜中用于在接近矿物表面,与之接触并随后退出探针上的细菌时测量吸引力和排斥力。所得数据用于解释在环境相关条件下细菌与矿物表面之间相互作用的动力学。 BFM用于研究细菌对矿物表面的粘附。在大肠杆菌与针铁矿,石墨和白云母相互作用的情况下,在高达400纳米的范围内检测到了吸引力和排斥力,其大小和符号取决于中间溶液的离子强度以及矿物表面的电荷和疏水性。还测量了高达几纳牛顿的粘合力,并表现出各种原纤化动力学,并反映了细菌和矿物质表面上结构和化学功能的复杂相互作用。在Burkholderia cepecia与云母相互作用的研究中,发现细胞的生理状况会影响观察到的粘附力。与在营养条件下生长的细胞相反,在营养不足的条件下生长的细胞对矿物表面的亲和力增加。 BFM还被用来表征电子从针状希瓦氏菌中的生物分子向针铁矿结构中的Fe(III)的转移。在好氧和厌氧条件下,在水溶液中以picoNewton分辨率进行力测量。从这些测量值得出的能量值(以attoJoules为单位)表明,在预期将电子从细菌转移到矿物质的厌氧条件下,oneidensis和针铁矿之间的亲和力迅速增加了2至5倍。力曲线中的特定特征,通过蠕虫状蛋白质展开模型分析,表明该细菌识别矿物质表面,从而使一个150 kDa的推定铁还原酶迅速在沙门氏菌的外膜内动员并特异性地相互作用。与针铁矿表面一起促进电子转移过程。

著录项

  • 作者

    Lower, Steven K.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Biogeochemistry.; Geochemistry.; Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 57 p.
  • 总页数 57
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物地球化学、气体地球化学;地质学;微生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号