首页> 外文学位 >Mobilization of strength in brittle failure of rock.
【24h】

Mobilization of strength in brittle failure of rock.

机译:岩石脆性破坏中的强度动员。

获取原文
获取原文并翻译 | 示例

摘要

The main goal of the thesis is to contribute to a better understanding of the phenomena involved in the process of brittle failure around underground openings, and to develop an appropriate approach to model these phenomena. In deep level civil and mining excavations where stresses easily exceed the strength of the rockmass, the proper consideration of the behaviour of rock during and after failure in constitutive modelling of rock behaviour has been the subject of many theoretical and experimental researches for a long time.; Current empirical and conventional experimental methods for obtaining the deformational behaviours of hard rocks under loading do not lead to results, which can be matched with in situ observations. This study demonstrates that this problem is not a matter of the popular notion of size effects but rather that it is related to the different circumstances under which the cohesive and frictional strength components are mobilized in laboratory compression tests and around underground openings. This difference cannot be captured by laboratory compression tests on cylindrical samples of rock.; Through a rigorous and critical examination and identification of potential failure mechanisms, the thesis introduces a constitutive model in which the process of brittle failure of rock in low confinement environments can be properly simulated in a continuum-modelling framework. The key factors to be considered in the understanding of brittle failure are the micro-mechanical phenomena involved in the brittle failure process. These phenomena can lead to the nonsimultaneous mobilization of the cohesive and frictional strength components during failure, and the thesis treats this in a so-called “cohesion weakening-frictional strengthening” (CWFS) model for brittle failure of rock.; The following summarizes the key conclusions of this study. (1) Constitutive models assuming simultaneous mobilization of the cohesive and frictional strength cannot properly simulate brittle rockmass failure near excavations in areas of low confinement. (2) A bilinear (concave upward) failure envelope is required for brittle failure of rock, such that at low confinement, the cohesive strength initially predominates the mobilized strength and it eventually is replaced by the frictional strength when the cohesion is consumed. The CWFS model can produce such bilinear failure envelopes and captures both the initiation and the arrest of failure around openings in hard brittle rocks. (3) The propagation of the failed zone (depth and extent) is a function of the brittleness index introduced in this study which explicitly considers the relative delay in the frictional strengthening relative to the rate of cohesion loss as functions of plastic strain. (4) Brittleness of rock is the most dominant factor, more than stress, in controlling the breakout shape. This explains the failure of many methods adopted by other researchers in establishing stress related breakout prediction models. (5) Different rocks possess different brittleness in different loading systems (laboratory, in situ) which should be considered in modelling the brittle failure of rock around openings. (6) This study demonstrated that the support pressure tends to reduce the brittleness of rock, which in turn reduces the depth of failure around supported excavations.
机译:本文的主要目的是有助于更好地理解地下洞口周围脆性破坏过程中涉及的现象,并开发出一种合适的方法来对这些现象进行建模。在应力很容易超过岩体强度的深层民用和采矿开挖中,长期以来,在岩石行为本构模型中正确考虑岩石在破坏过程中和破坏后的行为一直是许多理论和实验研究的主题。 ;当前获得载荷下硬岩变形行为的经验和常规实验方法无法得出结果,可以与原位观测相匹配。这项研究表明,这个问题与流行的尺寸效应概念无关,而是与在实验室压缩测试和地下开口周围动员内聚力和摩擦强度成分的不同情况有关。这种差异不能通过实验室对圆柱状岩石样品的压缩测试来捕获。通过对潜在破坏机制的严格,严格的检查和识别,本文引入了本构模型,可以在连续模型框架内对低约束环境下岩石的脆性破坏过程进行适当的模拟。在理解脆性破坏中要考虑的关键因素是脆性破坏过程中涉及的微机械现象。这些现象可能导致破坏过程中内聚强度和摩擦强度成分的同时移动,因此本文将其用于所谓的“内聚弱化-摩擦强化”(CWFS)模型,以解决岩石的脆性破坏问题。以下总结了这项研究的主要结论。 (1)本构模型假设同时移动内聚力和摩擦力,不能正确模拟低约束区域开挖附近的脆性岩体破坏。 (2)岩石的脆性破坏需要双线性(向上凹形)的破坏包络线,因此在低限制下,内聚强度最初主要是动员强度,最终在消耗内聚力时被摩擦强度所取代。 CWFS模型可以产生这样的双线性破坏包络,并捕获坚硬脆性岩石中孔洞周围的破坏的起止点。 (3)失效区的传播(深度和范围)是本研究引入的脆性指数的函数,该指数明确考虑了摩擦强化相对于内聚损失率的相对延迟是塑性应变的函数。 (4)岩石的脆性是控制破裂形状的最主要因素,而不是应力。这解释了其他研究人员在建立与压力相关的突围预测模型中采用的许多方法的失败。 (5)不同的岩石在不同的载荷系统(实验室,原位)中具有不同的脆性,在对洞口周围岩石的脆性破坏进行建模时应考虑到这一点。 (6)这项研究表明,支撑压力往往会降低岩石的脆性,从而减少支撑开挖周围的破坏深度。

著录项

  • 作者单位

    Queen's University at Kingston (Canada).;

  • 授予单位 Queen's University at Kingston (Canada).;
  • 学科 Engineering Mining.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 268 p.
  • 总页数 268
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 矿业工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号