首页> 外文学位 >Design Techniques for High Frequency PAs and VCOs.
【24h】

Design Techniques for High Frequency PAs and VCOs.

机译:高频功率放大器和VCO的设计技术。

获取原文
获取原文并翻译 | 示例

摘要

Today's content-centric mobile world demands Gigabit-per-second (Gbps) wireless communication systems. With sub-10GHz radio frequencies cluttered with existing wireless infrastructures such as 2.4GHz and 5GHz Wi-Fi and a multitude of LTE bands in the 1-2GHz range, focus has shifted to microwaves and mm-waves. The inverse relation between frequency and wavelength (and thus antenna size) differentiates mm-wave solutions in terms of size. For example, a 16-element antenna array only takes about 1.5cm2 at 60GHz. The pitfall, however, is the degraded active device performance at these high frequencies. Innovations at circuit-level and architecture-level are thus necessary. The dominant non-idealities that limit the performance of such radios in CMOS are the phase noise of the voltage controlled oscillator (VCO), the maximum output power of power amplifier (PA) limited by device breakdown voltage, and the non-linear behavior of the PA. Circuit and architecture level innovations presented in this research improve state-of-the-art performance in those areas.;To address the phase noise limitation, a mm-wave VCO architecture with low phase noise and large tuning range is presented. MM-wave systems rely on large channel bandwidths (e.g. 1.7GHz per channel, 7GHz total) to achieve high data rates. Channel selection using varactors and/or switched-capacitors suffers from poor phase noise performance due to the low quality factor of those elements at mm-waves. In the proposed architecture, the required frequency tuning range is divided amongst four narrow-band clusters of VCOs. Each cluster of VCOs can achieve lower phase noise due to the reduced frequency tuning range requirement. Phase noise of each cluster is further improved by using multiple cores of VCOs connected in parallel with differential transmission lines. The VCO achieves a phase noise of -101.8 dBc/Hz at 1 MHz offset with an FOM of -182dB/Hz and over 12.6% frequency tuning range (50.7 GHz to 57.5 GHz).;Another focus of this research is to improve the power amplifier (PA) performance (output power, linearity, and efficiency). Innovations in power combining techniques enable us to achieve the highest reported saturated power level of 22.6dBm in CMOS at 60GHz. Stacking transistors as a second remedy to improve the output power of the PA is considered and trade-offs in gain, reliability, and output power are treated analytically and an optimal stacking strategy for mm-wave PAs is presented. A simulation-based comparison shows the superiority of the proposed optimal stacking approach compared with the conventional stacking approach for a 60GHz SiGe PA.;A wideband self-contained PA linearization technique is presented to address mm-wave PA linearity challenges. The proposed Adaptive Gain and Phase Adjustment (AGPA) linearization technique compensates for both AM-AM and AM-PM distortion of the PA for large channel bandwidths of hundreds of megahertz at mm-waves. The gain and phase linearization loop consists of an envelope detector, an Analog Mapping Core (AMC), and a variable RC feedback network. The detection and adjustment loop has a low group delay and thus enables one of the largest linearization bandwidths published. AGPA improves the OP1dB of a stacked mm-wave PA by 2.8dB (from 9.5dBm to 12.3dBm) and reduces the IM3 products by 3dB at 8dBm output power with a tone spacing of 200MHz. Power Added Efficiency (PAE) at OP1dB is improved from 6.5% to 10.5% by enabling AGPA at 57GHz.
机译:当今以内容为中心的移动世界需要每秒千兆(Gbps)的无线通信系统。低于10GHz的射频杂乱了现有的无线基础设施(例如2.4GHz和5GHz Wi-Fi)以及1-2GHz范围内的许多LTE频段,因此焦点已转移到微波和毫米波上。频率和波长(以及天线尺寸)之间的反比关系使毫米波解决方案在尺寸上有所区别。例如,一个16元素的天线阵列在60GHz时仅占用约1.5cm2。但是,陷阱是在这些高频下有源器件性能下降。因此,有必要在电路级和架构级进行创新。限制CMOS中此类无线电性能的主要非理想因素是压控振荡器(VCO)的相位噪声,受器件击穿电压限制的功率放大器(PA)的最大输出功率以及该器件的非线性行为。 PA。这项研究中提出的电路和架构级创新提高了这些领域的最新性能。为了解决相位噪声限制,提出了一种具有低相位噪声和大调谐范围的毫米波VCO架构。 MM-wave系统依靠大的信道带宽(例如每个信道1.7GHz,总共7GHz)来实现高数据速率。由于在毫米波时这些元件的品质因数较低,因此使用变容二极管和/或开关电容器的通道选择会遭受较差的相位噪声性能。在所提出的架构中,所需的频率调谐范围被划分为VCO的四个窄带簇。由于降低了频率调谐范围的要求,每个VCO群集都可以实现较低的相位噪声。通过使用与差分传输线并联连接的多个VCO内核,可以进一步改善每个群集的相位噪声。该VCO在1 MHz偏移处实现了-101.8 dBc / Hz的相位噪声,FOM为-182dB / Hz,并且在12.5%的频率调谐范围(50.7 GHz至57.5 GHz)范围内。;本研究的另一个重点是提高功率放大器(PA)的性能(输出功率,线性度和效率)。功率组合技术的创新使我们能够在60GHz的CMOS中达到22.6dBm的最高饱和功率水平。考虑了堆叠晶体管作为提高PA输出功率的第二种方法,并分析了增益,可靠性和输出功率之间的折衷,并提出了毫米波PA的最佳堆叠策略。基于仿真的比较表明,与针对60GHz SiGe PA的常规堆叠方法相比,所提出的最佳堆叠方法具有优越性。提出了一种宽带自包含PA线性化技术,以应对毫米波PA线性度挑战。对于毫米波上数百兆赫兹的大通道带宽,建议的自适应增益和相位调整(AGPA)线性化技术可以补偿PA的AM-AM和AM-PM失真。增益和相位线性化环路包括一个包络检波器,一个模拟映射核(AMC)和一个可变RC反馈网络。检测和调节环路具有低的群延迟,因此可以实现已发布的最大线性化带宽之一。 AGPA将堆叠毫米波功率放大器的OP1dB提高了2.8dB(从9.5dBm降低到12.3dBm),在输出功率为8dBm且音调间距为200MHz的情况下,IM3产品降低了3dB。通过在57GHz下启用AGPA,OP1dB处的功率附加效率(PAE)从6.5%提高到10.5%。

著录项

  • 作者

    Shirinfar, Farid.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 87 p.
  • 总页数 87
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号