首页> 外文学位 >Electrorheology and particle dynamics of single-wall-carbon-nanotube suspensions under shear and electric fields.
【24h】

Electrorheology and particle dynamics of single-wall-carbon-nanotube suspensions under shear and electric fields.

机译:单壁碳纳米管悬浮液在剪切和电场作用下的流变学和粒子动力学。

获取原文
获取原文并翻译 | 示例

摘要

Electrorheological (ER) fluids are smart materials consisting of polarizable particles in an insulating liquid. Under an electric field, the dispersed particles develop an induced dipole moment and interact with each other to form chains or fibrous structures. This anisotropic microstructure enables ER fluids to have reversible changes on their macroscopic rheological properties, such as apparent viscosity and yield stress. As such, electrorheological fluids have potential application in the control of devices such as dampers, clutches, and robotics.;Single-wall-carbon-nanotubes (SWNTs), because of their nanoscale size, large aspect ratio and high polarizability, are of interest as a possible dispersed phase of novel, highly efficient ER fluids. In this work, we experimentally demonstrated for the first time the ER response of dilute SWNT suspensions, with a more-than-doubling of the apparent viscosity at moderate shear rates for a SWNT volume fraction of just Φ = 1.5×10-5. By systematically varying the shear rate and electric field, we found that the electrorheological response can be interpreted in terms of an electrostatic-polarization model, where the governing parameter was a modified Mason number giving the ratio of viscous to dipole-dipole forces. Analysis of the electrostatic forces suggested that the magnitude of the electrorheological response in the dilute SWNT suspension, which was much higher than conventional electrorheological fluids of comparable volume fractions, was due to the high aspect ratio of the nanotubes.;Further studies of the particle dynamics and electrorheology of SWNT suspensions were made to better understand the possible connection between the macroscopic rheology and microscopic particle dynamics. Using an optical polarization-modulation method and a modified concentric-cylinder viscometer, the first experimental measurements were made of ensemble-averaged SWNT orientation angles under combined shear flow and electric fields. The particle-orientation response was found to occur on time scales one to two orders of magnitude faster than the macroscopic electrorheological response, indicating that the particle orientation does not directly affect the apparent viscosity at these low concentrations. Consistent with the theory developed by Mason and coworkers for ellipsoidal particles, the equilibrium particle-orientation angles for various shear rates and electric fields collapsed when plotted against a parameter giving the ratio of electrostatic-to-shear-flow torques. However, the measured equilibrium orientation angles for the SWNTs showed poor quantitative agreement with the classical model. Analysis of the electrostatic interaction torques between large-aspect-ratio SWNTs showed that the interactions are significant in spite of the diluteness of the suspension, and likely account for the discrepancy between the measurement and predicted particle orientation angles.
机译:电流变(ER)流体是由绝缘液体中的可极化颗粒组成的智能材料。在电场作用下,分散的粒子形成感应的偶极矩,并彼此相互作用形成链或纤维结构。这种各向异性的微观结构使ER流体的宏观流变特性(如表观粘度和屈服应力)具有可逆变化。因此,电流变流体在控制阻尼器,离合器和机器人等设备方面具有潜在的应用前景。单壁碳纳米管(SWNT)由于其纳米级尺寸,大纵横比和高极化率而备受关注作为新型高效ER流体的可能分散相。在这项工作中,我们首次通过实验证明了稀释的SWNT悬浮液的ER响应,在中等剪切速率下,仅Φ= 1.5×10-5的SWNT体积分数时,表观粘度增加了两倍以上。通过系统地改变剪切速率和电场,我们发现电流变响应可以用静电极化模型来解释,其中控制参数是修正的梅森数,给出了粘性与偶极-偶极力之比。对静电力的分析表明,稀释的SWNT悬浮液中的电流变响应的幅度远高于可比较体积分数的常规电流变流体,这是由于纳米管的长径比高所致;对颗粒动力学的进一步研究并对SWNT悬浮液的流变学进行了研究,以更好地了解宏观流变学与微观颗粒动力学之间的可能联系。使用光偏振调制方法和改进的同心圆柱粘度计,在组合剪切流和电场下,对整体平均SWNT取向角进行了首次实验测量。发现颗粒取向响应在时间尺度上比宏观电流变响应快一到两个数量级,这表明在这些低浓度下颗粒取向不会直接影响表观粘度。与梅森(Mason)和他的同事开发的关于椭球形粒子的理论一致,针对参数给出静电与剪切流转矩之比的参数绘制时,各种剪切速率和电场的平衡粒子取向角均崩溃了。然而,所测得的单壁碳纳米管的平衡取向角与经典模型的定量一致性较差。大面积比的单壁碳纳米管之间的静电相互作用扭矩分析表明,尽管悬浮液稀薄,但相互作用仍然很明显,这很可能解释了测量角度与预测的颗粒取向角度之间的差异。

著录项

  • 作者

    Lin, Chen.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号