首页> 外文学位 >Computational fluid dynamics for design and optimization of tubular low-density polyethylene reactors.
【24h】

Computational fluid dynamics for design and optimization of tubular low-density polyethylene reactors.

机译:用于计算和优化管式低密度聚乙烯反应器的计算流体动力学。

获取原文
获取原文并翻译 | 示例

摘要

Polymer reactor models often assume that the reactants are mixed rapidly and thus the concentrations can be considered to be uniform at small scales. However, for fast reactions or for viscous systems, poor mixing of chemical species significantly affects the reactor performance while adversely affecting product quality. The purpose of this research is to formulate a generalized algorithm based on state-of-the-art computational fluid dynamics (CFD) techniques such as full or presumed probability density function (PDF) methods to better understand the role of micromixing in mixing-sensitive chemical processes. The impressive capabilities of the algorithm are investigated using an industrial test-case of tubular low-density polyethylene (LDPE) reactors. The precise control and optimization of these reactors are of primary industrial concern due to tight coupling between fluid dynamics and complex LDPE chemistry under extreme operating conditions. CFD simulations are carried out by combining the CFD model and detailed LDPE chemistry into a single FORTRAN code as well as into a commercial CFD software–Fluent©. The technique of in situ adaptive tabulation enables the computationally efficient inclusion of the stiff and non-linear LDPE chemistry. Results include temperature profiles, various species profiles and prediction of polymer quality with and without chain transfer mechanisms under various inlet and operating conditions, along with comparisons against pilot-plant scale data and/or comparison of various CFD techniques for accurate and efficient predictions of micromixing effects. Interesting features such as a bimodal temperature distribution and local hot-spots as well as global decomposition after an induction time or due to pulsating initiator feed are also observed under certain conditions using the full PDF simulations near critical points where instabilities occur. Considering the advantages of the two CFD methods, efforts are also directed towards efficient combination of the two techniques in order to obtain reactor stability plots and catalyst efficiency profiles, which are extremely helpful in operational decisions as well as design of control strategies. Thus the study not only illustrates the importance of mixing effects on LDPE polymerization in tubular reactors, but also yields insight into choosing appropriate operating conditions for maximizing catalyst efficiency while controlling reactor dynamics and product quality in plant-scale tubular LDPE reactors.
机译:聚合物反应器模型通常假定反应物迅速混合,因此在小规模下浓度可以认为是均匀的。但是,对于快速反应或粘性系统而言,化学物质混合不良会严重影响反应器性能,同时会不利地影响产品质量。本研究的目的是基于最新的计算流体动力学(CFD)技术(例如完整或假定的概率密度函数(PDF)方法)制定一种通用算法,以更好地了解微混合在混合敏感型中的作用化学过程。使用管式低密度聚乙烯(LDPE)反应器的工业测试案例研究了该算法令人印象深刻的功能。由于在极端运行条件下流体动力学与复杂的LDPE化学之间的紧密耦合,因此这些反应器的精确控制和优化已成为主要的工业问题。通过将CFD模型和详细的LDPE化学成分组合到单个FORTRAN代码以及商用CFD软件Fluent ©中,可以进行CFD模拟。通过原位自适应制表技术,可以在计算上有效地包含硬性和非线性LDPE化学成分。结果包括温度分布图,各种物种分布图以及在各种入口和操作条件下有无链转移机制的情况下聚合物质量的预测,以及与中试规模数据的比较和/或各种CFD技术的比较,以进行准确有效的微混合预测效果。在某些条件下,使用完整的PDF模拟在不稳定性发生的临界点附近,还可以观察到有趣的特征,如双峰温度分布和局部热点以及诱导时间后或引发剂进料脉冲后的整体分解。考虑到两种CFD方法的优势,还努力将两种技术进行有效结合,以获得反应堆稳定性图和催化剂效率曲线,这对操作决策和控制策略设计非常有帮助。因此,该研究不仅说明了管式反应器中混合效应对LDPE聚合反应的重要性,而且使人们深入了解了选择合适的操作条件以最大限度地提高催化剂效率,同时控制了工厂规模的管式LDPE反应器的动力学和产品质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号