首页> 外文学位 >Encapsulation of proteinaceous materials in macromolecular organic matter as a mechanism for environmental preservation.
【24h】

Encapsulation of proteinaceous materials in macromolecular organic matter as a mechanism for environmental preservation.

机译:蛋白质材料在高分子有机物中的封装是环境保护的一种机制。

获取原文
获取原文并翻译 | 示例

摘要

In this study, the nature and extend of preservation of organic nitrogen during diagenesis in various terrestrial and aquatic environments were evaluated by various analytical techniques, including solid-state NMR (13C and 15N), pyrolysis GC-MS, and TMAH thermochemolysis GC-MS. The results of this study show that while most proteins are degraded during diagenesis, a small portion of the total proteinaceous nitrogen pool is retained within biologically refractory organic components of sedimentary deposits and in refractory natural biopolymers. These preserved proteinaceous materials constitute the major components of the refractory organic nitrogen in the aquatic and terrestrial samples analyzed in this study.; To explore the possible preservation mechanism of the refractory organic nitrogen, chemical structures of the preserved natural biopolymers, i.e. algaenan from B. braunii and Coorongite, were first investigated. The following structural characteristics of these two natural biopolymers were revealed: (1) long paraffinic carbon chains are major structural components in both of these two biopolymers, (2) ether and ester linkages are the major crosslinking bridges that intermolecularly connect the paraffinic carbon chains into a highly aliphatic, insoluble, and chemically resistant three-dimensional network, (3) relative to the B. braunii algaenan, the Coorongite has a more crosslinked structure which implies a more extensive degradation.; An encapsulation hypothesis postulating that the preservation of organic nitrogen, such as proteinaceous nitrogen, is achieved by a physical encapsulation of these labile organic nitrogenous materials in the interior domains of macromolecular refractory organic materials was proposed. Physical encapsulation processes that protect proteinaceous materials from degradation were simulated in the laboratory using a humic acid and Coorongite as encapsulating media. Chemical attack on these labile organic nitrogenous materials was prevented by steric hindrance from the macromolecular network surrounding the encapsulated labile organic nitrogenous materials.; A more definitive evaluation of the dominant preservation mechanism in the specific degradation of B. braunii algae was achieved by a 2D solid-state 13C-15N double cross polarization MAS NMR experiment. The results clearly show that the proteinaceous materials in each algal pool maintained their original structural integrity during the degradation and a depolymerization-recondensation process did not occur.
机译:在这项研究中,通过各种分析技术,包括固态NMR( 13 C和 15 N),热解GC-MS和TMAH热化学裂解GC-MS。这项研究的结果表明,尽管大多数蛋白质在成岩过程中会降解,但总蛋白质氮库中的一小部分保留在沉积物的生物难降解有机成分和难降解的天然生物聚合物中。这些保存的蛋白质物质构成了本研究分析的水生和陆地样品中难溶有机氮的主要成分。为了探索难熔有机氮的可能保存机理,对保存的天然生物聚合物,即来自 B的藻类聚糖的化学结构进行了研究。首先研究了布鲁尼(Baniuni)和库伦石(Coorongite)。揭示了这两种天然生物聚合物的以下结构特征:(1)长链烷烃碳链是这两种生物聚合物中的主要结构成分,(2)醚和酯键是分子间将链烷烃碳链连接到其中的主要交联桥(3)相对于 B的高度脂族,不溶且耐化学腐蚀的三维网络。布朗尼藻类中,库伦石具有更交联的结构,这意味着更广泛的降解。提出了一种封装假设,该假设假设通过将这些不稳定的有机含氮材料物理封装在大分子耐火有机材料的内部区域中来实现有机氮(如蛋白质氮)的保存。在实验室中,使用腐殖酸和Coorongite作为封装介质,模拟了保护蛋白质材料免于降解的物理封装过程。通过围绕包封的不稳定有机氮材料的大分子网络的空间位阻,防止了对这些不稳定有机氮材料的化学侵蚀。对 B特定降解中的显性保存机制的更确定的评估。通过二维固态 13 C- 15 N双交叉极化MAS NMR实验获得了布鲁尼藻。结果清楚地表明,每个藻类库中的蛋白质物质在降解过程中均保持其原始结构完整性,并且未发生解聚-再缩合过程。

著录项

  • 作者

    Zang, Xu.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Chemistry Analytical.; Biogeochemistry.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 256 p.
  • 总页数 256
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;生物地球化学、气体地球化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号