首页> 外文学位 >New Fourier-space sampling methods for fast magnetic resonance imaging and flow quantification.
【24h】

New Fourier-space sampling methods for fast magnetic resonance imaging and flow quantification.

机译:用于快速磁共振成像和流量定量的新型傅里叶空间采样方法。

获取原文
获取原文并翻译 | 示例

摘要

Magnetic resonance imaging (MRI) has become a popular and effective diagnostic tool in hospitals since its initial clinical use in the early 1980s. MRI can provide not only in vivo morphological images but also physiological information such as blood flow velocity. The raw signals acquired from an MR scanner are usually interpreted as samples in Fourier space or so-called k-space. This thesis introduces new k-space sampling schemes for significantly reducing the scan times for general imaging and for flow quantification.; The first scheme is a variable-density sampling method which samples the high-spatial-frequency regions with a sampling density lower than that required by the well-known Nyquist sampling theorem. Although aliasing artifacts occur in the image, they can be diffuse and negligible compared to random noise if the sampling positions are adequately arranged. This method is particularly important for fast cardiovascular imaging where the scan time is limited by cardiac and respiratory motion.; The second sampling method slightly offsets the center of spiral trajectories so that the off-centered spiral trajectories are insensitive to the timing mis-registration between gradient and data acquisition systems of the MRI scanner. The timing error can cause shading artifact in spiral images and results in significant errors in quantitative applications such as flow quantification. This off-centered spiral trajectory is a simple but robust method to solve the timing problem.; Lastly a new flow quantification method based on Fourier velocity encoding is presented to overcome the notorious partial volume effects associated with conventional phase contrast methods. A new analysis framework is proposed to estimate the flow rate from low-spatial resolution and low-velocity-resolution velocity images which can be obtained in very short scan times. This method can extend the application of MR flow quantification to smaller vessels.; The concepts introduced in this thesis relieve MRI users from traditional thinking barriers such as Nyquist sampling criteria and partial volume effects. These concepts will stimulate more theoretical research in Fourier-space sampling and facilitate more clinical applications by reducing the scan time.
机译:自1980年代初期开始在临床上使用以来,磁共振成像(MRI)已成为医院中流行且有效的诊断工具。 MRI不仅可以提供体内形态图像,还可以提供诸如血流速度之类的生理信息。通常将从MR扫描仪获取的原始信号解释为傅立叶空间或所谓的 k 空间中的样本。本文介绍了新的 k 空间采样方案,可显着减少用于一般成像和流量定量的扫描时间。第一种方案是可变密度采样方法,该方法以比已知的奈奎斯特采样定理所需的采样密度低的采样率对高空间频率区域进行采样。尽管在图像中会出现混叠伪像,但如果采样位置适当安排,则与随机噪声相比,它们会散布和忽略不计。这种方法对于快速心血管成像尤其重要,因为在这种情况下扫描时间受心脏和呼吸运动限制。第二种采样方法略微偏移了螺旋轨迹的中心,因此偏心螺旋轨迹对MRI扫描仪的梯度和数据采集系统之间的时间配准不敏感。定时误差会在螺旋图像中引起阴影伪影,并在定量应用(例如流量定量)中导致重大误差。这种偏心的螺旋轨迹是解决时序问题的一种简单而稳健的方法。最后,提出了一种新的基于傅立叶速度编码的流量量化方法,以克服与传统相衬法相关的部分体积效应。提出了一种新的分析框架,可从可在很短的扫描时间内获得的低空间分辨率和低速度分辨率速度图像估算流量。这种方法可以将MR流量定量的应用扩展到较小的容器。本文介绍的概念使MRI用户摆脱了传统的思维障碍,例如Nyquist采样标准和部分体积效应。这些概念将激发傅立叶空间采样方面的更多理论研究,并通过减少扫描时间促进更多的临床应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号