首页> 外文学位 >Nanoscale liquid-vapor interfaces and their role in microbubble formation.
【24h】

Nanoscale liquid-vapor interfaces and their role in microbubble formation.

机译:纳米级液体-蒸汽界面及其在微气泡形成中的作用。

获取原文
获取原文并翻译 | 示例

摘要

The study of liquid-vapor interfaces plays a critical role in modern sciences and technologies. Most studies treat nanoscale liquid-vapor interfacial regions as single dividing surfaces in which abrupt changes of material properties occur. Such a treatment occasionally introduces large errors when the characteristic length of the system is comparable to interface thickness. The objective of this work is to conduct a detailed investigation on nanoscale liquid-vapor interfacial regions and then to apply gained insight to study the mechanism of microbubble formation.; Molecular Dynamics (MD) simulation has a unique capability of capturing detailed molecular-level information. Coupled with statistical thermodynamic models, MD simulation is applied to study both planar and spherical interfaces. Simulation on atomically thin liquid films reveals a new “interface overlapping” phenomenon, in which as film thickness decreases, the two interfacial regions of a liquid film merge together. The interface merge has a significant effect on stability conditions of liquid films, and has been overlooked in all classical studies. MD simulation on spherical interfaces is to calibrate Tolman's equation, which describes the curvature effect on surface tension. Results indicate that surface tension of droplets follows prediction of Tolman's equation very well whereas surface tension of bubbles does not.; A new scenario is proposed to describe microbubble formation on a smooth surface. Classically, bubble nucleation on a solid substrate has been described as heterogeneous nucleation from cavities. For a heater with a smooth surface, the cavity sizes are on nanometer scale and will require high temperature to activate. As the heater temperature increases, all liquid molecules adjacent to the heater surface will be vaporized and a vapor film forms over the heater. Bubbles will form as the vapor film breaks. The criterion for bubble formation is then correlated with vapor film stability, which in turn is determined by vapor film dimensions, and therefore the heater size and temperature. Two sets of experiment are carried out to verify this scenario: experiments on microbubble formation during Joule heating confirm the heater size effect; and time-resolved images of bubble evolvement when the heater is subject to short-pulsed laser radiation reveal the existence of vapor films.
机译:液体-蒸汽界面的研究在现代科学和技术中起着至关重要的作用。大多数研究将纳米级的液体-蒸汽界面区域视为单个分隔表面,在其中发生材料特性的突然变化。当系统的特征长度与界面厚度相当时,这种处理有时会引入较大的误差。这项工作的目的是对纳米级的液-汽界面区域进行详细的研究,然后运用获得的见识来研究微气泡的形成机理。分子动力学(MD)模拟具有捕获详细分子水平信息的独特功能。结合统计热力学模型,将MD模拟应用于研究平面和球形界面。对原子上薄的液膜的仿真揭示了一种新的“界面重叠”现象,其中,随着膜厚度的减小,液膜的两个界面区域会融合在一起。界面融合对液膜的稳定性条件有重大影响,并且在所有经典研究中都被忽略。球形界面的MD模拟是为了校准Tolman方程,该方程描述了曲率对表面张力的影响。结果表明,液滴的表面张力与Tolman方程的预测非常吻合,而气泡的表面张力则不然。提出了一种新的场景来描述光滑表面上的微气泡形成。经典地,在固体基质上的气泡成核已被描述为来自腔的异质成核。对于具有光滑表面的加热器,腔体尺寸为纳米级,需要高温才能激活。随着加热器温度的升高,与加热器表面相邻的所有液体分子都将蒸发,并且在加热器上方形成蒸气膜。蒸气膜破裂时会形成气泡。然后将气泡形成的标准与蒸汽膜稳定性相关联,而蒸汽膜稳定性又取决于蒸汽膜尺寸,进而取决于加热器的尺寸和温度。进行了两组实验以验证这种情况:焦耳加热期间微气泡形成的实验确认了加热器尺寸的影响;当加热器受到短脉冲激光辐射时,气泡析出的时间分辨图像揭示了蒸汽膜的存在。

著录项

  • 作者

    Weng, Jian-gang.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号