首页> 外文学位 >A three-dimensional study of nonlinear particle magnetization in an idealized magnetorheological fluid.
【24h】

A three-dimensional study of nonlinear particle magnetization in an idealized magnetorheological fluid.

机译:理想磁流变流体中非线性粒子磁化的三维研究。

获取原文
获取原文并翻译 | 示例

摘要

As with many technological breakthroughs, the usefulness of the magnetorheological effect as a smart material was identified nearly fifty years ago, yet few commercial devices have emerged. Magnetorheological (MR) fluids consist of micron-sized, magnetic particles in a typically nonmagnetic carrier fluid. The interest in these fluids, which are Newtonian in an off-state, is the solid behavior attained in an on-state (under the influence of a magnetic field). The complexity involved in formulating a viable MR fluid only increases the difficulty in understanding the mechanism of the MR effect. In this work, I investigate one aspect thought to have a direct influence on the yield strength of magnetorheological fluids—particle saturation. Previous research indicates that nonlinear particle magnetization reduces the dependence of the shear yield stress to subquadratic with applied magnetic field. Using a three-dimensional finite element method, the local field variables (magnetic field, magnetic induction, and magnetization) are found and analyzed. The inclusion of a three-dimensional MR fluid structure is also explicitly modeled. A micromechanical approach, directly using these local field variables, is used and compared to a macromechanical (continuum) approach. The results of this study show that particles begin to saturate at applied magnetic fields as low as μ0Happl = 0.05 T and are completely saturated by μ0Happl = 0.5 T. This study provides visualization of the particle magnetization as a function of applied field, shear angle, volume fraction, and intra-chain particle distance. This study reinforces the subquadratic dependence of shear yield stress on applied magnetic field, concluding τy = τy(Happl3/2 ) for 0.01 T ≤ μ0Happl ≤ 0.3 T.
机译:与许多技术突破一样,磁流变效应作为一种智能材料的有用性已在近50年前被确定,但几乎没有商用设备出现。磁流变(MR)流体由通常为非磁性的载流体中的微米级磁性颗粒组成。对这些处于关闭状态的牛顿流体的关注是处于打开状态(在磁场的影响下)的固体行为。配制可行的MR流体所涉及的复杂性只会增加理解MR效应机理的难度。在这项工作中,我研究了一个对磁流变流体的屈服强度有直接影响的方面-颗粒饱和度。先前的研究表明,非线性粒子磁化减小了施加磁场后剪切屈服应力对二次屈服的依赖性。使用三维有限元方法,可以找到并分析局部磁场变量(磁场,磁感应强度和磁化强度)。还明确建模了三维MR流体结构的内含物。使用直接使用这些局部场变量的微机械方法,并将其与宏观机械(连续)方法进行比较。研究结果表明,粒子在低至μ 0 H appl = 0.05 T的外加磁场下开始饱和,并被μ 0 < / sub> H appl = 0.5T。这项研究提供了粒子磁化强度与施加场,剪切角,体积分数和链内粒子距离的函数关系的可视化。这项研究加强了剪切屈服应力对施加磁场的次二次关系,得出τ y y (H appl 3 / 2 ),对于0.01 T≤μ 0 H appl ≤0.3T。

著录项

  • 作者

    Fales, Janine Larie.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化工过程(物理过程及物理化学过程);
  • 关键词

  • 入库时间 2022-08-17 11:46:47

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号