首页> 外文学位 >Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: A cell-adhesive and plasmin-degradable biosynthetic material for tissue repair.
【24h】

Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: A cell-adhesive and plasmin-degradable biosynthetic material for tissue repair.

机译:生物工程改造的蛋白接枝聚乙二醇水凝胶:一种用于组织修复的具有细胞粘附力和纤溶酶降解能力的生物合成材料。

获取原文
获取原文并翻译 | 示例

摘要

The goal of the research presented in this dissertation was to create a biomimetic artificial material that exhibits functions of extracellular matrix relevant for improved nerve regeneration. Neural adhesion peptides were photoimmobilized on highly crosslinked poly(ethylene glycol)-based substrates that were otherwise non-adhesive. Neurons adhered in two-dimensional patterns for eleven hours, but no neurites extended.; To enable neurite extension and nerve regeneration in three dimensions, and to address the need for specifically cell adhesive and cell degradable materials for clinical applications in tissue repair in general, an artificial protein was recombinantly expressed and purified that consisted of a repeating amino acid sequence based on fibrinogen and anti-thrombin III. The recombinant protein contained integrin-binding RGD sites, plasmin degradation sites, heparin binding sites, and six thiol-containing cysteine residues as grafting sites for poly(ethylene glycol) diacrylate via Michael-type conjugate addition. The resulting protein-graft-poly(ethylene glycol)acrylates were crosslinked by photopolymerization to form hydrogels. Although three-dimensional, RGD mediated and serine protease-dependent ingrowth of human fibroblasts into protein-graft-poly(ethylene glycol) hydrogels occurred, only surface neurite outgrowth was observed from chick dorsal root ganglia. Axonal outgrowth depended on the concentration of matrix-bound heparin, suggesting that improved mechanical strength of the hydrogels and possible immobilization of neuroactive factors due to the presence of heparin promoted neurite outgrowth.; Together, the above results show that specific biological functions can be harnessed by protein-graft-poly(ethylene glycol) hydrogels to serve as matrices for tissue repair and regeneration. In particular, the two design objectives, specific cell adhesion and degradability by cell-associated proteases, were fulfilled by the material. In the future, this and similar artificial protein-graft-poly(ethylene glycol) materials with varying protein elements for improved wound healing might serve as biosynthetic implant materials or wound dressings that degrade in synchrony with the formation of a variety of target tissues.
机译:本文提出的研究目的是创造一种仿生的人造材料,该材料具有与改善神经再生有关的细胞外基质功能。将神经粘附肽光固定在否则不具有粘附性的高度交联的基于聚乙二醇的基质上。神经元以二维模式粘附了十一个小时,但没有神经突延伸。为了能够在三个维度上实现神经突的扩展和神经再生,并满足通常用于组织修复的临床应用中对特定细胞粘附剂和细胞可降解材料的需求,重组表达并纯化了人工蛋白质,该人工蛋白质由基于氨基酸的重复氨基酸序列组成对纤维蛋白原和抗凝血酶III。重组蛋白包含整合素结合的RGD位点,纤溶酶降解位点,肝素结合位点和六个含巯基的半胱氨酸残基,作为通过迈克尔型共轭添加的聚乙二醇二丙烯酸酯的接枝位点。通过光致聚合使所得的蛋白质- graft -聚(乙二醇)丙烯酸酯交联以形成水凝胶。尽管发生了RGD介导的,丝氨酸蛋白酶依赖性的人成纤维细胞向蛋白质- graft -聚乙二醇水凝胶的向内生长,但仅观察到了鸡背根神经节的表面神经突生长。轴突的生长取决于基质结合的肝素的浓度,这表明由于肝素的存在,水凝胶的机械强度提高,神经活性因子可能被固定,从而促进了神经突的生长。在一起,以上结果表明,特定的生物学功能可以被蛋白质- graft -聚乙二醇水凝胶利用,作为组织修复和再生的基质。特别地,该材料满足了两个设计目标,即特定的细胞粘附和与细胞相关的蛋白酶的降解性。将来,这种和类似的具有变化的蛋白质元素的人工蛋白质- graft -聚乙二醇材料可能会用作生物合成的植入物材料或伤口敷料,这些物质会随着伤口形成而同步降解。各种目标组织。

著录项

  • 作者

    Halstenberg, Sven.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Biomedical.; Engineering Materials Science.; Health Sciences Medicine and Surgery.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号