首页> 外文学位 >Algorithmic stability and ensemble-based learning.
【24h】

Algorithmic stability and ensemble-based learning.

机译:算法稳定性和基于合奏的学习。

获取原文
获取原文并翻译 | 示例

摘要

We explore two themes in formal learning theory. We begin with a detailed, general study of the relationship between the generalization error and stability of learning algorithms. We then examine ensemble-based learning from the points of view of stability, decorrelation, and threshold complexity.; A central problem of learning theory is bounding generalization error. Most such bounds have been obtained through uniform convergence, via some variant of VC dimension. These analyses focus on the space of classifiers available to a learning algorithm, rather than on the algorithm itself.; Bousquet and Elisseeff (2002) have shown, using McDiarmid's method of independent bounded differences (1989), that algorithmic stability implies good bounds on generalization error. However, their definition of stability is too restrictive to be widely applicable.; We introduce the more general notion of training stability. We show that training stability implies good bounds on generalization error even when the learner has infinite VC dimension. Our proof requires a result of independent interest: we generalize McDiarmid's theorem to the case when differences are bounded with high probability.; In the Probably-Approximately-Correct setting of Valiant (1984), training stability is necessary and sufficient for good error performance and serves as a distribution-dependent analog of VC dimension. This enables us to emphasize the learning algorithm instead of the classifier space.; We next consider algorithms (e.g., boosting) which construct ensembles of weak classifiers. We show that AdaBoost (Freund and Schapire, 1997), a widely-used boosting algorithm, is stability-preserving.; We demonstrate that some boosting algorithms implicitly construct classifiers which are decorrelated (i.e., rarely jointly wrong). We present two new algorithms which build ensembles of explicitly decorrelated classifier pairs. Experiments indicate that these new algorithms are sometimes competitive with AdaBoost and with bagging (Breiman, 1996). The experiments employ a fast new algorithm for finding decorrelated pairs of decision stumps.; Lastly, we use threshold complexity to show that, under certain conditions, AdaBoost takes a long time to converge. In some situations, our pair-based algorithms are exponentially faster than AdaBoost. We analyze boosting as a dynamical system over the space of sequences of weights.
机译:我们探索形式学习理论中的两个主题。我们首先对泛化误差与学习算法的稳定性之间的关系进行详细的常规研究。然后,我们从稳定性,去相关性和阈值复杂度的角度检查基于集成的学习。学习理论的中心问题是泛化误差。大多数此类界限是通过VC尺寸的某些变体通过均匀收敛而获得的。这些分析着重于学习算法可用的分类器空间,而不是算法本身。 Bousquet和Elisseeff(2002)已证明,使用McDiarmid的独立有界差分方法(1989),算法稳定性暗示了泛化误差的良好界限。但是,它们对稳定性的定义过于严格,无法广泛应用。我们介绍训练稳定性的更一般的概念。我们表明,即使学习者具有无限的VC维数,训练稳定性也暗示了泛化误差的良好界限。我们的证明需要有独立利益的结果:我们将麦克迪米德定理推广到差异以高概率为界的情况。在Valiant(1984)的“近似正确”设置中,训练稳定性对于获得良好的错误性能是必要且足够的,并且是VC尺寸的依赖于分布的类似物。这使我们能够强调学习算法而不是分类器空间。接下来,我们考虑构造弱分类器的合奏的算法(例如,增强)。我们证明了AdaBoost(Freund和Schapire,1997),一种广泛使用的增强算法,是保持稳定性的。我们证明了某些提升算法会隐式构造与去相关的分类器(即很少共同出错)。我们提出了两种新算法,它们构建了显式去相关的分类器对的集合。实验表明,这些新算法有时与AdaBoost和袋装竞争(Breiman,1996)。实验采用了一种快速的新算法来寻找解相关的决策树对。最后,我们使用阈值复杂度来表明,在某些条件下,AdaBoost会花费很长时间收敛。在某些情况下,我们基于对的算法比AdaBoost快得多。我们分析了在权重序列空间上作为动力系统的提升。

著录项

  • 作者

    Kutin, Samuel Alan.;

  • 作者单位

    The University of Chicago.;

  • 授予单位 The University of Chicago.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 275 p.
  • 总页数 275
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号