首页> 外文会议>Annual international conference on research in computational molecular biology >BBK~* (Branch and Bound over K*): A Provable and Efficient Ensemble-Based Algorithm to Optimize Stability and Binding Affinity over Large Sequence Spaces
【24h】

BBK~* (Branch and Bound over K*): A Provable and Efficient Ensemble-Based Algorithm to Optimize Stability and Binding Affinity over Large Sequence Spaces

机译:BBK〜*(K *上的分支和边界):一种可验证且有效的基于集合的算法,可在较大序列空间上优化稳定性和绑定亲和力

获取原文

摘要

Protein design algorithms that compute binding affinity search for sequences with an energetically favorable free energy of binding. Recent work shows that the following design principles improve the biological accuracy of protein design: ensemble-based design and continuous conformational flexibility. Ensemble-based algorithms capture a measure of entropic contributions to binding affinity, K_a. Designs using backbone flexibility and continuous side-chain flexibility better model conformational flexibility. A third design principle, provable guarantees of accuracy, ensures that an algorithm computes the best sequences defined by the input model (i.e. input structures, energy function, and allowed protein flexibility). However, previous provable methods that model ensembles and continuous flexibility are single-sequence algorithms, which are very costly: linear in the number of sequences and thus exponential in the number of mutable residues. To address these computational challenges, we introduce a new protein design algorithm, BBK~*, that retains all aforementioned design principles yet provably and efficiently computes the tightest-binding sequences. A key innovation of BBK~* is the multi-sequence (MS) bound: BBK~* efficiently computes a single provable upper bound to approximate K_a for a combinatorial number of sequences, and entirely avoids single-sequence computation for all provably suboptimal sequences. Thus, to our knowledge, BBK~* is the first provable, ensemble-based K_a algorithm to run in time sublinear in the number of sequences. Computational experiments on 204 protein design problems show that BBK~* finds the tightest binding sequences while approximating K_a for up to 10~5-fold fewer sequences than exhaustive enumeration. Furthermore, for 51 protein-ligand design problems, BBK~* provably approximates K_a up to 1982-fold faster than the previous state-of-the-art iMinDEE/A~*/X~* algorithm. Therefore, BBK~* not only accelerates protein designs that are possible with previous provable algorithms, but also efficiently performs designs that are too large for previous methods.
机译:计算结合亲和力的蛋白质设计算法可搜索具有非常有利的结合自由能的序列。最近的工作表明,以下设计原则可提高蛋白质设计的生物学准确性:基于整体的设计和连续的构象灵活性。基于集成的算法捕获了熵对绑定亲和力K_a的度量。使用主干柔韧性和连续侧链柔韧性的设计可以更好地建模构形柔韧性。第三种设计原则,可证明的准确性保证,确保算法计算输入模型定义的最佳序列(即输入结构,能量函数和允许的蛋白质灵活性)。但是,以前建模模型和连续灵活性的可验证方法是单序列算法,这非常昂贵:序列数呈线性,因此可变残基数呈指数。为了解决这些计算难题,我们引入了一种新的蛋白质设计算法BBK〜*,该算法保留了上述所有设计原则,并且可证明并有效地计算了最紧密的结合序列。 BBK〜*的一项关键创新是多序列(MS)绑定:BBK〜*有效地计算了一个可证明的上限,以结合组合数量的序列来近似K_a,并且完全避免了对所有可证明次优序列的单序列计算。因此,据我们所知,BBK〜*是第一种可证明的,基于整体的,在序列数上在时间上亚线性运行的K_a算法。针对204种蛋白质设计问题的计算实验表明,BBK〜*找到最紧密的结合序列,而K_a的近似值比穷举枚举少了10〜5倍。此外,对于51个蛋白质-配体设计问题,BBK〜*证明比以前的最新iMinDEE / A〜* / X〜*算法快K_a快1982倍。因此,BBK〜*不仅可以加速使用先前可证明的算法进行的蛋白质设计,而且可以有效地执行对于先前方法而言过大的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号