首页> 外文学位 >Complete sensor-based coverage of unknown spaces: Incremental construction of cellular decompositions.
【24h】

Complete sensor-based coverage of unknown spaces: Incremental construction of cellular decompositions.

机译:基于传感器的未知空间的完整覆盖:细胞分解的增量构造。

获取原文
获取原文并翻译 | 示例

摘要

The goal of coverage path planning is to determine a path that passes a detector or an effector over all points in an environment. This thesis prescribes provably complete coverage path planners that can accommodate detectors and sensors with variable effective detecting and sensing ranges. Our sensor-based planners exploit on-line sensor data to achieve complete coverage of a priori unknown planar spaces. We simplify coverage by decomposing free space of a robot into regions, called cells, that allows a planner to determine a “simple” path within each cell. The collection of these cells is termed a cellular decomposition. For coverage with detectors that are the same size as the robot, we introduce a specific family of cellular decompositions, termed Morse decompositions, whose cells are formed using critical points of Morse functions, functions with non-degenerate critical points, at which topologically meaningful events occur. Each cell of the Morse decompositions can be covered by performing simple motions such as farming maneuvers. For coverage with detectors that have extended ranges, we also introduce a hierarchical decomposition comprising Morse decompositions and cells characterized by generalized Voronoi diagrams which are sets of points equidistant to two obstacles. The hierarchical decomposition divides the robot's free space into two regions: vast and narrow. In the vast regions, we use Morse decompositions and in the narrow regions we simply have the robot follow the generalized Voronoi diagram to cover the unknown space. To interchange coverage modes from vast to narrow, we introduce a method that uses range data. We encode all topologically meaningful information about the decompositions using graph representations and thus we reduce complete coverage of an unknown space to incremental graph construction procedures. We also use topological and geometrical features of our algorithm and Morse decompositions to prevent some of the failures of our algorithm due to bad sonar data. Finally, we exploit the structure of Morse decompositions to plan a path between two critical points that is less “sensitive” to dead-reckoning error.
机译:覆盖路径规划的目标是确定在环境中的所有点上均通过检测器或效应器的路径。本文提出了可证明的完整的覆盖路径规划器,可以容纳具有可变有效检测和感应范围的检测器和传感器。我们基于传感器的计划人员可以利用在线传感器数据来完全覆盖先验未知平面空间。我们通过将机器人的自由空间分解为称为“单元格”的区域来简化覆盖范围,该区域允许计划者确定每个单元格内的“简单”路径。这些细胞的集合称为细胞分解。为了覆盖与机器人大小相同的检测器,我们引入了一个特定的细胞分解家族,称为 Morse分解,其细胞是通过 Morse函数的临界点形成的,具有非退化临界点的功能,在临界点会发生拓扑上有意义的事件。莫尔斯分解的每个单元都可以通过执行简单的动作(例如耕作演习)来覆盖。对于具有扩展范围的检测器的覆盖范围,我们还引入了一个分层分解,其中包括莫尔斯分解和以广义Voronoi图为特征的像元,这些Voronoi图是与两个障碍等距的点集。分层分解将机器人的自由空间分为两个区域:广阔和狭窄。在广阔的区域中,我们使用莫尔斯(Morse)分解,而在狭窄的区域中,我们仅使机器人遵循广义Voronoi图来覆盖未知空间。为了将覆盖范围从宽到窄互换,我们引入了一种使用范围数据的方法。我们使用图表示对有关分解的所有拓扑有意义的信息进行编码,因此,我们减少了增量图构造过程对未知空间的完全覆盖。我们还使用算法的拓扑和几何特征以及莫尔斯(Morse)分解来防止由于不良声纳数据而导致的算法失败。最后,我们利用莫尔斯(Morse)分解的结构来计划两个临界点之间的路径,该路径对死区重入错误不太“敏感”。

著录项

  • 作者

    Acar, Ercan Umut.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Mechanical.; Artificial Intelligence.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;人工智能理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号