首页> 外文学位 >Advanced computational techniques for the analysis of three-dimensional fluid-structure interaction with cavitation.
【24h】

Advanced computational techniques for the analysis of three-dimensional fluid-structure interaction with cavitation.

机译:先进的计算技术,用于分析空化作用下的三维流体结构相互作用。

获取原文
获取原文并翻译 | 示例

摘要

In an underwater-shock environment, cavitation, i.e., boiling, occurs as a result of reflection of the shock wave from the free surface and/or wetted structure that causes the pressure in the water to fall below its vapor pressure. If the explosion is sufficiently distant from the structure, the motion of the fluid surrounding the structure may be assumed small, which allows linearization of the governing fluid equations. Felippa and DeRuntz (1984) developed the cavitating acoustic finite element (CAFE) method for modeling this phenomenon. While their approach is robust, it is too computationally expensive for realistic 3-D simulations. In the work reported here, the efficiency and flexibility of the CAFE approach has been greatly improved by: (i) separating the total field into equilibrium, incident; and scattered components, (ii) replacing the bilinear CAFE basis functions with high-order Legendre-polynomial basis functions, which produces a cavitating acoustic spectral element (CASE) formulation, (iii) introducing a simple, non-conformal coupling method for the structure and fluid finite-element models, and (iv) introducing structure-fluid time-step subcycling. Field separation provides flexibility, as it allows the incorporation of non-acoustic incident fields, and propagates incident waves through the mesh with total fidelity. The use of CASE admits a significant reduction in the number of fluid degrees-of-freedom required to reach a given level of accuracy. The combined use of subcycling and non-conformal coupling affords order-of-magnitude savings in computational effort. The benefits provided by these improvements are illustrated with 1-D and 3-D canonical underwater-shock problems.
机译:在水下冲击环境中,由于自由表面和/或湿润结构的冲击波反射而导致水压降到低于其水平面,因此发生汽蚀(斜体)即沸腾。蒸汽压力。如果爆炸距离建筑物足够远,则可以假定围绕建筑物的流体运动很小,从而可以线性化控制流体方程。 Felippa和DeRuntz(1984)开发了空化声学有限元(CAFE)方法来对这种现象进行建模。尽管他们的方法很健壮,但对于现实的3D模拟而言,它的计算量太大。在这里报告的工作中,通过以下方法大大提高了CAFE方法的效率和灵活性:(i)将整个场分离为平衡,入射;和(ii)将双线性CAFE基础函数替换为高阶Legendre多项式基础函数,从而产生空化声谱元素(CASE)公式,(iii)为结构引入简单,非保形的耦合方法和流体有限元模型,以及(iv)引入结构流体时间步子循环。场分离提供了灵活性,因为它允许合并非声入射场,并以完全保真的方式将入射波传播通过网格。使用CASE可以大大降低达到给定精度水平所需的流体自由度数量。子循环和非保形耦合的组合使用在计算工作量方面节省了数量级。这些改进所提供的好处将通过1-D和3-D规范水下冲击问题加以说明。

著录项

  • 作者

    Sprague, Michael Alan.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Mechanical.; Applied Mechanics.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;应用力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号