首页> 外文学位 >Sulfur biogeochemistry: Kinetics of intermediate sulfur species reactions in the environment.
【24h】

Sulfur biogeochemistry: Kinetics of intermediate sulfur species reactions in the environment.

机译:硫生物地球化学:环境中中间硫物种反应的动力学。

获取原文
获取原文并翻译 | 示例

摘要

A geochemical model describing sequential mineral precipitation has been developed based on a thermodynamic description of metal sulfide stability, coupled with consideration of fluid flow through a biofilm, sulfide precipitation kinetics, and sulfate reducing bacteria (SRB) activity. This model accurately predicts metal sulfide precipitation as a result of SRB activity in engineered bioreactors, wetland remediation systems, and some low-temperature metal sulfide deposits.; Consideration of known mechanisms and pathways of pyrite oxidation showed that the oxidation kinetics of tetrathionate (S4O6 2−) and elemental sulfur required definition in order identify intermediate sulfur species potentially bioavailable in low pH environments. Results show that the oxidation kinetics of tetrathionate in acidic solutions with ferric iron are quite slow, defined by the rate law at 70°C and pH 1.5: r=10-6.61±0.3S4 O 2-60.3±0.08 Fe3+0.15± 0.09 ; (r = mol L−1 sec−1). The apparent activation energy (EA) for tetrathionate oxidation at pH 1.5 is 105 ± 4 KJ/mol. Polythionates (SO62−) are not reactive with H2O2, but oxidize very quickly (second order rate constant >108 M−1 sec −1, 25°C) in the presence of the hydroxyl radical (OH*).; Elemental sulfur oxidizes very slowly at low pH (first order rate constant of 5 × 10−10 mol m−2 sec −1 at pH 1.5 and 1 × 10−8 mol M −2 sec−1 at pH 0.5 and 25°C), and is not reactive with H2O2 or OH*. Ferric iron approximately doubles the reaction rate, but that effect is independent of ferric iron concentration. Additional experiments indicate flocculation limits reactive surface area and that oxidation is not controlled by solubilization of S8 rings from the crystalline α-S8 form.; Results of these experiments coupled with field observations at the Richmond 5-way site in the Iron Mountain Mine near Redding, CA suggest that pyrite oxidation at low pH likely proceeds through multiple parallel pathways. Detachment of thiosulfate is not a viable mechanism under these conditions, though the reactivity of a similar surface-bound group is likely very important in understanding pyrite oxidation. Microbial populations reflect a predominant pathway in which Fe3+ is regenerated as the principle oxidant of surface-bound sulfur species at pyrite surfaces.
机译:基于金属硫化物稳定性的热力学描述,并考虑了通过生物膜的流体流动,硫化物沉淀动力学和硫酸盐还原细菌(SRB)活性,开发了描述连续矿物沉淀的地球化学模型。该模型准确地预测了工程生物反应器,湿地修复系统和某些低温金属硫化物中SRB活性引起的金属硫化物沉淀。考虑到黄铁矿氧化的已知机理和途径,表明四硫酸盐(S 4 O 6 2 )和元素硫的氧化动力学需要定义为了鉴定在低pH环境中可能生物利用的中间硫物种。结果表明,铁酸铁在酸性溶液中四硫酸盐的氧化动力学相当慢,这由速率定律在70°C和pH 1.5下定义: r = 10 -6.61±0.3 S 4 O 2- 6 0.3±0.08 Fe3 + 0.15±0.09 ; (r = mol L -1 sec -1 )。在pH 1.5时四硫酸盐氧化的表观活化能(E A )为105±4 KJ / mol。聚硫酸盐(SO 6 2-)与H 2 O 2 不反应,但氧化非常快(第二在羟基(OH *)存在的情况下,阶速率常数> 10 8 M -1 sec -1 ,25°C。 ;元素硫在低pH值下氧化非常缓慢(在pH 1.5时,一阶速率常数为5×10 -10 mol m -2 sec -1 和1×10 −8 mol M -2 sec -1 在pH 0.5和25°C下),与H < sub> 2 O 2 或OH *。三价铁约使反应速率加倍,但该作用与三价铁浓度无关。另外的实验表明,絮凝作用限制了反应表面积,并且氧化不受晶态α-S 8 形式的S 8 环增溶的控制。这些实验的结果,加上在加利福尼亚州雷丁附近的铁山矿的里士满5向站点的现场观察表明,低pH值的黄铁矿氧化可能通过多个平行途径进行。在这些条件下,硫代硫酸盐的分离不是可行的机制,尽管在理解黄铁矿氧化方面,相似的表面结合基团的反应性可能非常重要。微生物种群反映了一条主要途径,其中铁 3 + 被再生为黄铁矿表面表面结合的硫物种的主要氧化剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号